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Abstract 

Quantum computing is an emerging technology that leverages the principles of quantum 

mechanics to perform calculations exponentially faster than classical computers for certain 

applications. In drug discovery and development, quantum algorithms have the potential to 

accelerate the search for new therapeutics. This review provides a comparative analysis of 

quantum and classical computational approaches for drug development applications in the 

preclinical setting. We first give an overview of the principles behind quantum computing and 

explain how quantum circuits can encode and manipulate quantum information. We then discuss 

key quantum algorithms that may confer advantages over their classical counterparts for 

pharmaceutical problems such as molecular docking, molecular dynamics simulations, and 

machine learning. Current quantum computing hardware restrictions and the applicability of 

hybrid quantum-classical algorithms are also considered. We analyze early proof-of-concept 

demonstrations applying quantum methods to drug design problems and discuss the challenges 

and outlook moving forward. Overall, quantum computing holds promise to expand the scope 

and scale of computational modeling in drug discovery once the hardware matures, but classical 

techniques likely still have advantages for certain near-term applications. Further 

interdisciplinary research is needed to fully leverage the capabilities of quantum computation in 

the preclinical drug development pipeline. 

Indexing terms: quantum computing, drug design, docking, molecular dynamics, 

machine learning 

Introduction 

The conventional drug development pipeline represents a lengthy and costly journey, 

spanning approximately 10-15 years from the initial stages of discovery to the eventual 

market approval. This extensive process demands an investment exceeding $2 billion 

for each successfully approved drug [1]. A substantial portion of both time and financial 

resources is allocated to the preclinical phases, which involve the identification of lead 

compounds and the optimization of their properties before progressing to clinical trials. 

This inherently slow and expensive nature of drug development has prompted a keen 

interest in harnessing advanced computational methods to enhance the efficiency of 

early-stage drug discovery. In recent years, a paradigm shift has been witnessed in the 

pharmaceutical industry, as researchers increasingly explore the integration of quantum 

computing into drug discovery processes. The majority of computational modeling in 

pharmaceutical research has traditionally relied on classical physics-based simulations 

executed on conventional digital computers. However, the advent of quantum 

computing presents a revolutionary alternative, promising to bring about a fundamental 

transformation in the realm of computation, particularly for crucial applications in 

pharmaceutical modeling [2]. 

Quantum computing operates based on the principles of quantum mechanics, utilizing 

quantum bits or qubits as the fundamental units of information. Unlike classical bits, 

which can exist in a state of 0 or 1, qubits can exist in multiple states simultaneously, 

owing to the phenomenon of superposition. This inherent ability to process vast 

amounts of information concurrently offers a significant advantage over classical 

computing when applied to complex problem-solving tasks. One of the primary areas 

where quantum computing holds promise for pharmaceutical research is in the 

simulation of molecular interactions and drug behavior [3]. Quantum computers excel 

in solving problems related to the quantum nature of matter, enabling more accurate 

representations of molecular structures and interactions. Classical simulations often 

struggle with the intricacies of quantum mechanics, leading to approximations and 

limitations in the precision of results. Quantum computers, on the other hand, are better 

equipped to model the complex behavior of molecules, providing researchers with a 
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more detailed and realistic understanding of drug actions. The utilization of quantum 

computing in drug discovery has the potential to expedite the identification of lead 

compounds and streamline the optimization process. Quantum algorithms can 

efficiently explore vast chemical spaces, facilitating the rapid screening of potential 

drug candidates with enhanced accuracy [4].  In their 2023 study, Wong and colleagues 

introduced an innovative approach employing quantum machine learning and 

simulation through quantum computing to transform the drug discovery research and 

development process [5]. The primary objective of their methodology is to reduce the 

R&D duration to a range of 3-6 months, concurrently minimizing expenses. This is 

achieved by leveraging machine learning for hit generation and employing quantum 

simulation to facilitate filtering based on target binding. 

Figure 1.   

 

 
Quantum computers are based on quantum bits (qubits), which can exist in a 

superposition of 0 and 1 states simultaneously. This enables quantum algorithms to 

perform parallel calculations on all possible input states at once. The phenomena of 

quantum entanglement and interference between qubits also allows certain problems 

like optimization, search, and simulation of quantum systems to be solved faster than 

any possible classical algorithm. As quantum computing hardware matures over the 

next 5-10 years, it will become feasible to apply these quantum speedups to large-scale 

problems in drug discovery. 

This review provides a head-to-head comparison between quantum and classical 

computational methods for pharmaceutical applications in the preclinical setting [6]. 

We focus on how quantum computing may impact computational drug design 

techniques like molecular docking, molecular dynamics (MD) simulations, and 

machine learning. The principles of quantum computation are first introduced, followed 

by a discussion of relevant quantum algorithms. The challenges and outlook for 

applying quantum methods to accelerate and expand preclinical drug development are 

then analyzed. 
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Overview of Quantum Computing 

Quantum computers encode information in quantum bits or qubits. Unlike classical 

binary bits that exist in definite 0 or 1 states, qubits can exist in a superposition of 0 and 

1 at the same time. Mathematically this superposition is represented as a linear 

combination of basis states: 

|𝜓⟩  =  𝛼|0⟩  +  𝛽|1⟩ 
Where α and β are complex coefficients that define the probabilities to observe 0 or 1 

upon measurement. Multiple qubits can also exhibit entanglement, where the quantum 

state of each qubit is dependent on the others despite physical separation between 

qubits. These two unique quantum properties of superposition and entanglement enable 

quantum parallelism, allowing computations on all possible combinations of qubit 

states simultaneously.  

Quantum algorithms, at the heart of quantum computing, operate by manipulating 

qubits, the fundamental units of quantum information. These algorithms employ a series 

of quantum logic gates to process information, and unlike classical bits, qubits can exist 

in a superposition of both 0 and 1 states simultaneously. This unique property allows 

quantum computers to perform certain calculations exponentially faster than their 

classical counterparts for specific problems. 

The manipulation of qubits through quantum logic gates is a crucial aspect of quantum 

algorithm design. Single qubit gates, for instance, are responsible for altering the 

coefficients α and β, effectively rotating the qubit state in the complex plane. These 

rotations enable the creation of intricate superpositions, enhancing the quantum 

computer's computational power [7]. Two-qubit gates, such as the controlled-NOT 

(CNOT) gate, facilitate conditional operations based on the state of one qubit. This 

entangling gate, in particular, plays a pivotal role in establishing correlations between 

qubits, allowing for the execution of complex quantum algorithms. The reversibility of 

quantum logic gates is a fundamental characteristic, ensuring that the operations can be 

undone if needed. This reversibility is a direct consequence of the unitary nature of 

quantum operations, which preserves the normalization of quantum states. As a result, 

quantum algorithms maintain coherence throughout their execution, exploiting the 

intricate interplay of quantum superpositions to perform computations efficiently. 

Upon completing the quantum algorithm, the next step involves measuring the qubits. 

This measurement process collapses the qubits' superposition states to classical 0 or 1 

values. However, the outcome is probabilistic, with the probabilities determined by the 

final superposition state of the qubits. This introduces an inherent randomness into 

quantum computation. To obtain meaningful results, quantum algorithms are often run 

multiple times, and the statistics of the measurement outcomes are analyzed. This 

statistical approach allows researchers to discern patterns and trends in the quantum 

information processing, contributing to the overall understanding and optimization of 

quantum algorithms. Repeated runs of the same quantum algorithm build up a 

distribution of measurement outcomes, providing insights into the quantum system's 

behavior [8]. Researchers analyze these outcomes to extract meaningful information 

and validate the correctness of the quantum algorithm. It's important to note that the 

probabilistic nature of quantum measurements introduces challenges in error correction 

and fault tolerance, areas actively explored to make quantum computing more robust 

and reliable for practical applications. Quantum speedups arise from constructive and 

destructive interference between superposed states during the quantum algorithm. 

Optimization problems like finding the minimum value of some cost function can 

achieve quadratic or exponential speedup on a quantum computer compared to the best 

classical techniques. Other quantum algorithms like Shor’s provide exponential 

speedups for factoring large integers and Grover’s algorithm achieves quadratic 

speedup for searches in unstructured databases. Special-purpose quantum simulators 

can also efficiently model quantum systems [9]. 

There are multiple physical implementations of qubits being explored, including 

superconducting circuits, trapped ions, and photonic systems. Each has tradeoffs 

between qubit performance factors like coherence time, gate fidelity, connectivity, and 

scalability. Current noisy intermediate-scale quantum (NISQ) devices contain 50-100 

qubits. It is anticipated that fault-tolerant quantum computers with thousands of logical 

qubits capable of reliably running advanced algorithms will be developed in the next 

10-15 years. Hybrid classical-quantum workflows using cloud access to NISQ 

computers are already being explored for pharmaceutical applications in the near-term. 
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Quantum Methods for Drug Design 

Molecular Docking: Molecular docking, a pivotal computational technique in drug 

discovery, plays a crucial role in predicting the binding interactions between small 

molecule drug candidates and target proteins. The process involves modeling the 

intricate intermolecular relationships and scoring various poses to determine the most 

favorable binding configuration. The daunting challenge lies in the exhaustive 

exploration of potential orientations and conformations of the ligand within the binding 

site. The complexity of this task scales exponentially with the number of rotatable bonds 

in the ligand, making it computationally intensive, particularly for flexible ligands. 

Classical docking approaches employ heuristic strategies to navigate and prune the vast 

search space, yet they encounter scalability issues, especially in handling the flexibility 

inherent in many drug candidates. However, a notable advancement in this field comes 

from quantum docking algorithms, such as the Quantum Approximate Optimization 

Algorithm (QAOA) pioneered by Google AI Quantum. These quantum algorithms 

leverage the principles of quantum parallelism to expedite the docking process 

dramatically. 

Figure 2.  

 
The QAOA, based on the principles of quantum mechanics, offers a paradigm shift in 

computational efficiency. It harnesses the power of superposition and entanglement to 

explore multiple possibilities simultaneously. In comparison to classical methods, 

quantum docking algorithms can achieve remarkable speedups, with reported instances 

of up to 3600 times faster computations. This substantial acceleration stems from the 

ability of quantum systems to process complex information in parallel, enabling them 

to explore a vast search space with unprecedented efficiency. The key advantage of 

quantum docking algorithms lies in their ability to address the scalability issues 

encountered by classical methods when dealing with flexible ligands. The inherent 

parallelism in quantum computations allows for the simultaneous evaluation of multiple 

conformations, significantly reducing the time required to explore potential binding 

configurations. This not only enhances the speed of the docking process but also opens 

new avenues for investigating complex biological systems with greater computational 

accuracy [10]. 

Despite the promising advancements, it's essential to note that quantum docking 

algorithms are still in the early stages of development. Challenges such as error 

correction, noise reduction, and the need for robust quantum hardware pose hurdles to 

their widespread adoption. However, as quantum computing technology continues to 

progress, quantum docking holds the potential to revolutionize the field of molecular 

docking, offering unprecedented computational advantages for drug discovery and 

molecular design. 

QAOA prepares an equal superposition of all ligand poses, then iteratively adjusts 

superposition phases via a mixing operator and cost Hamiltonian that scores binding 

affinity [11]. Constructive interference reinforces optimal poses while interfering with 

suboptimal ones. Measurement reveals the pose with best binding score. Early proof-

of-concept used QAOA on Rigetti’s quantum computer to dock biotin and tubulin 

inhibitors. Larger drug-target studies will be possible as quantum hardware improves. 

Hybrid quantum-classical docking schemes could also have clients submit candidate 

poses classically which are then scored and optimized by a quantum server. 
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Molecular Dynamics Simulations: Molecular dynamics (MD) simulations serve as a 

pivotal tool in the field of computational chemistry, facilitating the exploration of the 

time-dependent behavior of molecular systems. The fundamental principle underlying 

MD simulations involves the numerical integration of Newton's equations of motion, 

allowing for the comprehensive study of conformational changes, binding kinetics, and 

various thermodynamic properties. Despite their utility, classical MD simulations 

encounter significant computational challenges when dealing with extended timescales 

and large system sizes. This predicament arises due to the exponential scaling of 

computational complexity with the number of particles involved in the simulation. 

Classical MD simulations are based on classical mechanics and typically involve 

solving Newton's equations of motion for each particle in the system. While effective 

for short timescales and smaller systems, the computational demands become 

formidable as one attempts to model larger and more complex molecular systems over 

extended periods. The necessity to calculate the interactions between all pairs of atoms 

in the system contributes to the exponential increase in computational requirements. 

Consequently, the simulation of long timescales or large molecular systems becomes 

impractical and often exceeds the capabilities of classical MD approaches [12].  

In contrast, quantum molecular dynamics (QMD) algorithms present a promising 

avenue for overcoming the limitations associated with classical MD simulations. 

Quantum mechanics governs the behavior of particles at the atomic and subatomic 

levels, and QMD algorithms leverage quantum principles to simulate molecular systems 

more efficiently. One key advantage lies in the linear scaling of quantum algorithms, 

wherein the computational cost grows linearly with the size of the system. This 

remarkable improvement results from the exploitation of quantum entanglement, a 

phenomenon that classical simulations cannot fully capture. The inherent nature of 

quantum systems allows for the simultaneous consideration of multiple particle states 

through entanglement, providing a more accurate representation of complex molecular 

interactions. Quantum effects, such as superposition and tunneling, are naturally 

incorporated into QMD simulations, making them particularly well-suited for modeling 

phenomena where classical simulations fall short. Consequently, QMD algorithms are 

capable of addressing the challenges associated with long timescales and large system 

sizes that classical MD struggles to handle. 

The advent of quantum computers has further propelled the development of quantum 

algorithms for molecular dynamics simulations. Quantum computers leverage quantum 

bits (qubits) and quantum gates to perform calculations that were previously deemed 

intractable for classical computers. Quantum MD algorithms capitalize on the 

parallelism inherent in quantum computing, allowing for the efficient simulation of 

large and complex molecular systems. 

Quantum MD was first theorized in the 1980s , and has been demonstrated recently on 

small proof-of-concept problems. For example, a photonic quantum processor was used 

to simulate the dynamics of a two qubit hydrogen molecule over 50 time-steps. Larger 

implementations will require overcoming decoherence and scaling up the number of 

qubits substantially. Hybrid classical-quantum frameworks using shallow quantum 

circuits to generate electron entanglement followed by classical propagation may be 

more feasible in the near term. Such hybrid quantum MD could potentially enable more 

accurate simulations of drug binding and reactivity. 

Table 1. Comparison of Quantum and Classical Computing 

Quantum Computing Classical Computing 

Based on quantum bits (qubits) that 

leverage superposition and 

entanglement for parallelism 

Based on classical bits with discrete 0 

or 1 states 

Exponentially faster for certain 

problems like optimization, simulation, 

factoring 

Efficient general-purpose computing 

for most tasks 

Limited by small qubit numbers, noise, 

and decoherence in NISQ devices 

Mature, large-scale digital computers 

commercially available 

Requires quantum algorithms and 

programming techniques 

Conventional software programming 

languages and techniques 

Emerging hardware with rapid pace of 

progress 

Mature hardware progressing at 

Moore's Law rate 

Potential to simulate quantum systems, 

intractable classically 

Approximations required when 

modeling quantum effects 
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Promising quantum speedups predicted 

for pharmaceutical problems once 

scaled 

Known scalability and performance 

for computational chemistry and 

machine learning 
 

Machine Learning: Machine learning (ML) has become an integral tool in the realm 

of computational drug discovery, playing a pivotal role in the development of predictive 

models, virtual screening techniques, and the optimization of molecular properties. The 

application of ML in this domain has significantly expedited the drug discovery process, 

enabling researchers to sift through vast datasets, identify potential drug candidates, and 

optimize molecular structures with greater efficiency. However, the evolution of 

quantum machine learning (QML) introduces a paradigm shift in computational 

approaches, holding the promise of unparalleled speedups and enhanced capabilities in 

processing quantum data. Quantum machine learning leverages the principles of 

quantum mechanics to encode both machine learning models and data into qubits, the 

fundamental units of quantum information [13]. This quantum encoding enables the 

execution of quantum computations for various stages of the ML pipeline, including 

training and inference. Quantum circuit learning, a notable facet of QML, closely 

mimics classical neural networks but employs trainable qubit rotation gates in lieu of 

classical neurons. These gates introduce quantum parallelism and entanglement, 

offering a unique avenue for enhancing the computational capacity of ML models [14]. 

Within the realm of quantum machine learning, several algorithms have emerged, each 

designed to address specific challenges in the field. The HHL (Harrow-Hassidim-

Lloyd) algorithm, for instance, specializes in solving linear systems of equations—an 

essential task in many scientific and engineering applications. Quantum support vector 

machines (QSVM) have been proposed as an alternative to classical support vector 

machines, harnessing the power of quantum parallelism for efficient classification 

tasks. Additionally, quantum Boltzmann machines, inspired by classical counterparts, 

aim to model complex probabilistic relationships in quantum systems. The integration 

of quantum computing with machine learning is not without its challenges. Quantum 

computers are susceptible to errors, and the delicate nature of quantum states requires 

sophisticated error correction techniques. Furthermore, the practical implementation of 

quantum machine learning algorithms demands a concerted effort in developing 

scalable quantum hardware and optimizing quantum software for real-world 

applications. Despite these challenges, the potential benefits of quantum machine 

learning in drug discovery and other scientific domains are undeniable. 

Early applications of quantum ML to drug discovery show potential for speeding up 

molecular property predictions. Quantinuum’s quantum algorithm toolkit was used with 

quantum circuit learning to rapidly predict logP values for drug-likeness. Rigetti Forest 

has demonstrated hybrid classical-quantum ML workflows for predicting 

pharmaceutical solubility and performing generative modeling of molecular structures 

[15]. As quantum ML hardware and algorithms mature, broader pharmaceutical use 

cases in virtual screening, property optimization, and de novo molecular design are 

anticipated. However, modeling large molecular datasets may face qubit limitations in 

the near term. 

Table 2. Comparison of Quantum and Classical Performance 

Application Quantum Advantage Classical Scalability 

Molecular 

Docking 

Exponential speedup 

possible for pose search 

and scoring 

Heuristics enable application to 

large protein/ligand systems 

Molecular 

Dynamics 

Linear scaling possible 

with full quantum 

simulation 

Approximations allow classical 

MD up to millions of atoms 

Machine 

Learning 

Potential for faster training 

and quantum feature 

learning 

Train/predict on large molecular 

datasets and conventional 

features 

Quantum 

Chemistry 

Accurate electronic 

structure and properties 

Approximate methods for large 

systems 

Optimization Quadratic to exponential 

speedup over classical 

techniques 

Heuristics work well for many 

pharmaceutical optimizations 

 

Hybrid Quantum-Classical Computing: The potential of quantum computing looms 

large, promising revolutionary advancements in problem-solving and computational 

efficiency. However, the current landscape of Noisy Intermediate-Scale Quantum 
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(NISQ) devices is marked by inherent limitations that impede their seamless integration 

into practical applications. A primary constraint is the existence of a small number of 

qubits, the fundamental units of quantum information. These qubits are susceptible to 

noise and errors, posing significant challenges to the reliability and stability of quantum 

computations. Decoherence, another critical issue plaguing NISQ devices, arises from 

the sensitivity of quantum states to their external environment. Quantum systems are 

highly susceptible to decoherence, leading to the loss of quantum information and 

compromising the accuracy of computations. Managing and mitigating decoherence 

represent formidable obstacles on the path to realizing the full potential of quantum 

computing [16]. Additionally, the connectivity of qubits within existing quantum 

processors is restricted, limiting the range of feasible computations [17]. Quantum 

algorithms, often intricate and demanding, frequently require extensive connectivity 

and interactions among qubits. The current constraints on connectivity hinder the 

implementation of various algorithms that could otherwise exploit the true power of 

quantum parallelism. 

A noteworthy challenge in the quantum computing landscape is the realization of fault-

tolerant logical qubits. While fault-tolerant quantum computing is an aspirational goal, 

it remains elusive in the current NISQ era. The fragility of quantum states to errors and 

environmental influences necessitates the development of error-correction mechanisms 

and fault-tolerant architectures, prerequisites for unleashing the full potential of 

quantum computing in practical scenarios. Amidst these challenges, a pragmatic 

approach to quantum computing emerges through the paradigm of hybrid classical-

quantum workflows [18]. This approach acknowledges the current limitations of 

quantum processors and seeks to leverage their strengths in tandem with classical 

systems. By partitioning computational tasks and delegating specialized subtasks such 

as optimization or integration to the quantum processor, while retaining classical 

systems for overall coordination, a synergistic collaboration between classical and 

quantum computing can be established [19]. 

This hybrid approach allows organizations and researchers to extract value from near-

term quantum capabilities without being hindered by the constraints of existing 

quantum hardware. Classical computers, with their robustness and maturity, serve as 

orchestrators, managing the overall workflow and handling tasks that are currently 

beyond the reach of NISQ devices. Meanwhile, the quantum processor contributes its 

unique strengths in tackling specific computational challenges that align with its 

capabilities [20]. 

For pharmaceutical applications, strategies like using classical machine learning to 

reduce the search space followed by quantum search for optimizations show promise. 

Early-stage molecular screening could run classically, then quantum molecular 

dynamics used for lead optimization. Hybrid algorithms utilizing shallow circuits with 

fewer gates may be more robust to noise on NISQ hardware [21]. Vendors like Amazon 

Braket, Rigetti, D-Wave, and IBM Q offer hybrid cloud platforms combining quantum 

and classical resources. As quantum volume increases over time, more computation can 

shift to the quantum processor in a modular fashion. 

Table 3. Outlook for Quantum Applications in Drug Development 

Stage of Drug 

Development 

Potential Quantum Applications Timeframe 

Target Identification and 

Validation 

Quantum machine learning for 

genomic analysis 

Long-term 

Lead Generation Virtual screening with quantum ML 

and docking 

Mid-term 

Lead Optimization Quantum molecular dynamics and 

property predictions 

Near-term 

Preclinical Development Quantum protein-ligand binding and 

reactivity modeling 

Mid-term 

Clinical Trials Quantum ML for clinical data analysis Long-term 

FDA Review and 

Approval 

- No impact 

Post-Market Surveillance Quantum ML on pharmacovigilance 

data 

Long-term 
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Challenges and Outlook 

Quantum computing represents a promising avenue for revolutionizing computational 

methodologies in the field of drug discovery. The potential quantum advantages it offers 

could significantly augment existing approaches, potentially accelerating the drug 

development process and improving the understanding of complex biological systems. 

Nevertheless, the realization of these benefits is impeded by formidable challenges that 

need to be addressed comprehensively. At present, the field of quantum computing 

faces significant limitations, primarily embodied by the constraints of Noisy 

Intermediate-Scale Quantum (NISQ) devices. These devices, characterized by a limited 

number of qubits, susceptibility to noise, and stability issues, hinder the widespread 

application of quantum computing in pharmaceutical research [22]. The current state of 

NISQ devices confines their utility to proof-of-concept demonstrations rather than 

practical, large-scale applications essential for drug discovery. 

One of the foremost impediments in the path towards harnessing quantum computing 

for pharmaceutical development lies in the restriction of qubit number. The current 

NISQ devices are constrained by the relatively small number of qubits they can reliably 

handle [23]. To unlock the full potential of quantum computing in drug discovery, 

substantial advancements in qubit count are imperative. Researchers and engineers are 

actively working on developing scalable quantum processors that can accommodate a 

more significant number of qubits while maintaining the required coherence. Noise, an 

inherent challenge in quantum systems, poses another significant barrier. Quantum bits, 

or qubits, are susceptible to environmental disturbances and fluctuations, leading to 

errors in calculations. Enhancing the stability of qubits and minimizing the impact of 

noise is crucial for achieving accurate and reliable quantum computations in drug 

discovery [24]. Developing error-correction techniques and error-mitigation strategies 

is pivotal to overcome the inherent noise issues in quantum systems. Moreover, the 

coherence time of quantum bits, which represents the duration over which a qubit can 

maintain its quantum state, is a critical factor. Current NISQ devices exhibit limited 

coherence times, restricting the window of time available for quantum computations. 

Progress in extending coherence times is essential to enable more complex calculations 

and analyses required for drug discovery applications. 

Connectivity is yet another challenge that needs to be addressed for quantum computing 

to realize its potential in pharmaceutical development. The ability of qubits to 

efficiently communicate and share information across the quantum processor is vital for 

solving complex problems [25]. Improving connectivity within quantum processors 

will enhance the efficiency of quantum algorithms, making them more applicable to the 

intricate tasks involved in drug discovery. Furthermore, the implementation of robust 

quantum error correction is imperative to mitigate the impact of errors induced by 

environmental factors and imperfections in quantum hardware. Developing effective 

error-correction codes and error-mitigation techniques is a crucial aspect of advancing 

quantum computing for drug discovery beyond proof-of-concept stages [26]. 

Most proposed quantum algorithms also require thousands of logical qubits to show 

unambiguous speedup over classical techniques for large-scale problems in drug 

discovery. Hybrid quantum-classical computing and algorithmic improvements like 

error mitigation will stretch NISQ capabilities in the near term. Libraries for interfacing 

with NISQ computers are still maturing. Domain expertise in quantum programming to 

develop practical applications is lacking. Close collaboration between quantum 

physicists, chemists, and computer scientists will be crucial to design optimized hybrid 

quantum-classical algorithms and software stacks tailored for pharmaceutical 

challenges. Investment into research and development partnerships between drug 

companies, hardware vendors, and quantum software startups will drive progress. 

Application chemists and modelers will need new skills to productively employ 

quantum computing. 

Once the hardware and software matures over the next 5-10 years, quantum advantages 

could enable accurate simulations of drug molecules and targets that are intractable 

classically. Protein-ligand docking and molecular dynamics simulations may be 

performed on unprecedented scales to drive precision drug discovery. Machine learning 

models could be trained on extensive molecular data far faster to optimize leads. We 

anticipate quantum approaches will first make inroads for molecular problems 

dependent on representing quantum effects and electronic structure accurately. Impact 

should then broaden across areas like genomics and clinical trial data as quantum 

scalability improves [27]. The next decade will be a critical period to build up the 
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software, workflows, and personnel infrastructure to eventually utilize the profound 

power of quantum computation for pharmaceutical innovation [28]. Companies that 

invest early in quantum computing may achieve dramatic competitive advantages once 

the technology matures. With prudent strategy and execution, the pharmaceutical 

industry is poised to become one of the greatest beneficiaries from the quantum 

computing revolution [29]. 
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