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Abstract 

This paper introduces an advanced model for recommender systems, combining cross-attribute 

matrix factorization with shared user embeddings. This hybrid approach is designed to improve 

recommendation quality, particularly in scenarios with sparse data and for new users or items. 

By incorporating both user and item attributes into the matrix factorization process, our model 

effectively addresses the cold-start problem and increases the robustness of recommendations. 

Extensive evaluations on the MovieLens and Pinterest datasets confirm the superiority of our 

model, highlighting its potential for practical applications in diverse recommender system 

environments. 

Introduction 

Recommender systems have become an indispensable component of many online 

platforms, guiding users through a plethora of content to find what best matches their 

preferences and needs. Traditional methods, such as collaborative filtering [1] and 

matrix factorization [2], have been successful in capturing the latent preferences of 

users based on historical interactions [3]. The rise of deep learning has revolutionized 

numerous domains, including computer vision where it has enabled breakthroughs in 

image recognition [4, 5], natural language processing [6, 7], and speech recognition [8]. 

Variational techniques and hybrid architectures of deep learning with data 

augmentations [9] elevate the performance of modeling to a higher standard [10, 11]. 

Leveraging these advancements, models such as NeuMF and NCF have incorporated 

neural networks in the realm of recommender systems, 

Manuscript in submission 2023, do not distribute. 

 

Figure 1: Matrix Factorization 

advancing beyond the linearity of matrix factorization to allow for more intricate 
representations of user-item interactions [12]. However, a gap remains in considering 
the intrinsic attributes of users and items, which can be pivotal in addressing challenges 
such as the cold-start problem and ensuring robustness, especially for long-tail items 
and users. 

While the NeuMF and NCF model mark significant advancements in the field, they 

primarily focus on the interactions derived from user-item matrices without tapping 

into the wealth of information contained within intrinsic attributes of users and items. 

By overlooking these attributes, the models potentially miss out on crucial signals that 

could enhance recommendation quality, especially in scenarios where interaction data 

is sparse or nonexistent, such as in the cold-start problem. To address this, the Attribute-

aware Deep CF model incorporates item and user features into the matrix factorization 

(MF) model [13]. It transforms these features into learnable embeddings, subsequently 
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integrating them into the multi-layer perceptron (MLP). However, we believe there is 

potential to further enhance this approach. Specifically, there’s an opportunity to 

exploit more features by cross-referencing user attributes with item attributes and vice 

versa. 

Our Cross-Attribute Matrix Factorization Model with Shared User Embedding offers 

several distinctive contributions to the realm of recommender systems: 

1. Incorporation of a Shared User Embedding: One of the major contributions of 
our model is the introduction of a shared user embedding. In situations where 
we encounter coldstart users, this shared embedding facilitates a basic 
recommendation process. It mitigate the robustness problems posed by relying 
on either randomly-initialized embeddings or immaturely learned user 
embeddings, which often aren’t reliable for providing meaningful 
recommendations. 

2. Enhancement of the Existing MF Model with Cross-Attribute Interactions: 
Building on the foundation of the current matrix factorization (MF) model, 
we’ve added cross-attribute matrix factorization capabilities. To elaborate, 
each user embedding interacts with every item attribute embedding, and vice 
versa; every item interacts with user attribute embeddings. This intricate design 
ensures that we harness the full potential of existing data and features, fostering 
richer and more insightful recommendation outcomes. 

Our model are further validated through a series of experiments. We used two 

benchmark datasets - Movielens and Pinterest [13] - consistently underscore the 

enhanced performance of our model. Notably, CAMF shines with pronounced 

superiority in environments marked by heightened dataset sparsity, thereby showcasing 

its practical applicability in real-world settings where user-item interactions may be 

limited. 

Related Works 

Matrix Factorization 

MF convert each user and item to a real-valued vector of latent variables. The MF 

estimates the interaction between user and item by using the inner product of two 

vectors: 

 𝑟(𝑢, 𝑖)  =  𝛾𝑢 ·  𝛾𝑖, (1) 

where the γu and γi denotes the latent factor for user u and item i, the r(u,i) denotes the 

interaction between this user and item. This method is very popular by combining good 

scalability with predictive accuracy. In addition, they offer much flexibility for 

modeling various real-life situations. However, the matrix factorization has several 

limitations that it is prone to recommend popular items and is vulnerable to sparse 

dataset. 

 

Figure 2: Neural collaborative filtering framework 
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NCF, GMF and NeuMF Model 

Neural Collaborative Filtering (NCF) [12] serves as a foundational framework to model 

the interaction between users and items using neural networks. The general frame work 

of NCF is shown in Figure 2. Within the NCF paradigm, two primary models emerge: 

GMF (Generalized Matrix Factorization) and MLP (Multi-Layer Perceptron). GMF can 

be seen as a neural analog to traditional matrix factorization techniques, capturing 

linear patterns in user-item interactions. On the other hand, MLP is designed to discover 

intricate non-linear patterns. The NeuMF model blends the linear capabilities of GMF 

with the rich expressiveness of MLP to further improve recommendation performance. 

We mainly focus on GMF model and NeuMF model in our work. The mapping function 

of the GMF layer is defined as following: 

 𝜙(𝑝𝑢, 𝑞𝑖) = 𝑝𝑢 ⊙ 𝑞𝑖 (2) 

where ⊙ denotes the element-wise product of vectors. Then this vector can be projected 

to the output layer: 

 𝑦ˆ𝑢𝑖 =  𝒂𝒐𝒖𝒕(ℎ𝑇(𝑝𝑢 ⊙  𝑞𝑖)). (3) 

In the work presented by He et al. [12], the GMF (Generalized Matrix Factorization) 

layer, characterized by its activation function aout and edge weights h, offers a pathway 

to revert back to the traditional matrix factorization model. As depicted in Figure 3, the 

NeuMF (Neural Matrix Factorization) model is an integration of both the GMF and the 

MLP (Multi-Layer Perceptron) models. Within this architecture, the GMF and MLP 

layers independently process the input embeddings. Subsequently, their outputs are 

concatenated, forming the basis for the NeuMF layer. 

Attributed-Aware Deep Collaborative Filtering Model 

The NCF framework takes into account the user-item interaction information, but it 

neglects the intrinsic attribute information of users/items. Wang et al. [14] proposed an 

Attribute-aware deep CF model, as depicted in Figure 4, which incorporates the 

attributes of users/items. They introduced a pairwise pooling layer following the 

embedding layer to effectively capture the relationship between users/items and their 

corresponding attributes. The operation for pairwise pooling is defined as: 

      

𝑉  

Figure 3: Neural Matrix Factorization Model 
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Figure 4: Attribute-aware Neural CF Model 

After calculate pu and qi, the model takes the element-wise product of pu and qi into 

MLP layers for the final prediction. 

Method 

Shared User Embedding 

Our experiments with GMF, NeuMF, and Attribute-aware Deep CF models showed 

that the GMF model trained faster and had nearly the same performance as the more 

complex NeuMF. The detailed results are discussed later. Due to its efficiency and 

effectiveness, we chose to focus on the GMF model. 

Our goal was to improve recommendations in scenarios with sparse data and for new 

users or items. To address the cold-start and sparsity challenges, we use a shared user 

embedding embedding might encapsulate overall user traits. As an illustrative case, 

encountering a novel user or item could harness this shared embedding, furnishing more 

generic and resilient recommendation outcomes. To combine this shared user 

embedding with a specified user embedding, we introduce a weight α ranging from 0 

to 1 to adjust the balance between them by controlling the activation of the specified 

user embedding: 

umerged = αushared +(1 − α)uembedded    (6) 

ϕ(umerged,i) = umerged ⊙ i (7) 

In alignment with the GMF paradigm delineated earlier, the weighted user vector 

undergoes an element-wise multiplication with the item vector. The balancing weight, 

α, is determined by a singular hidden layer, taking another ensemble of item and user 

attributes as inputs: 

                                             

Herein, z symbolizes the layer input, which incorporates attributes like item popularity 

and user historical interaction frequency. For instance, if attributes indicate an new user, 

the model might assign greater emphasis on the shared user vector, recommending 

universally acclaimed movies. Conversely, for universally appealing movies, the model 

could diminish the weight on specifed user embedding, offering recommendations less 

tailored to individual tastes. 



 

NeuralSlatE          OPEN ACCESS JOURNALS   
International Journal of Applied Machine Learning and Computational Intelligence 

 

 

 

13 | P a g e  
International Journal of Applied Machine Learning and Computational Intelligence 

Cross-Attribute Matrix Factorization Model 

Another pivotal enhancement in our approach lies in the explicit incorporation of 
attribute information. Specifically, we multiplied the user vectors with item attributes 
and item vectors with user attributes. To accommodate this, we introduced dedicated 
embeddings tailored for attributes. This setup is not just a mere inclusion of attributes; 
it fundamentally changes the representation learning. By allowing these interactions, 
we aim to learn the underlying patterns and relationships between users, items, and their 
inherent attributes. 

After facilitating these interactions, the resultant vectors are concatenated. This 

consolidated representation captures both the standalone and cross-attribute 

information. To process this rich representation further, we direct it through several 

neural network layers. These layers are designed to abstract higher-level patterns from 

the combined input. 

Our comprehensive model, which encompasses the previously discussed Shared User 

Embedding and the current Cross-Attribute interactions, is illustrated in Figure 5. 

Experiments 

In our evaluations, we leverage two prominent datasets: MovieLens and Pinterest. Both 

have been previously used in [12, 13] due to their rich attributes and feasibility for 

preprocessing. 

MovieLens Dataset 

For MovieLens, we employ the version containing 1 million ratings, ensuring that each 
user has rated at least 20 movies. Explicit ratings are transformed: a rating from a user 
denotes a label of 1 for the movie. To supplement this, we randomly sample 99 
unobserved entries, tagging them as negative samples with a label of 0. 

The dataset also provides user metadata encompassing gender, age, and occupation. 
This metadata is used as the user’s attributes, denoted as , both in the Attribute-aware 
Deep CF model and our proposed architecture. 

Movie data primarily comprise genres. Recognizing that movies can span multiple 

genres, each genre is treated as a distinct attribute. These are used as gi
t during our 

experiments. 

 

Figure 5: Proposed Attribute-aware Model 

Pinterest Dataset 

The Pinterest dataset, characterized by its enormity and sparsity, presents a unique 
challenge. With over 20% of the users having a singular pin, assessing algorithmic 
efficacy becomes intricate. Thus, we refined the dataset to include only users with at 
least 10 pins, which are labeled as 1. Like the MovieLens dataset, 99 unobserved entries 
are sampled as negatives labeled as 0. 

User data in this dataset provide insights into pins and page categories. We group every 

40 pins together, such that a user with, say, 35 pins falls into the first group and a user 
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with 41 pins falls into the second. The myriad of page categories, initially totaling 468, 

are consolidated into 45 main categories, given the observation that several categories 

possess scant samples. This structured data is then taken as the user’s attribute input. 

Items, represented by images, lack explicit attributes. Notably, an image may be pinned 

by diverse users. To derive an item’s ’pin attribute’, we employ the formula: 

                                         

In the equation, Vu signifies the user set in the dataset, and D encapsulates the user-item 

pairs. Pinsu stands for the user’s pin count. This weighted summation offers insights 

into an item’s popularity beyond a mere pin count. Analogous to user pins, items are 

grouped every 50, and this processed data serves as the item’s attribute input. 

Evaluation and Metrics 

We use the leave-one-out evaluation in our experiment. For each user, we randomly 
choose one of user’s interaction and the 99 negative samples mentioned in Data 
Preprocessing section as test set. We rank the test item among the 100 items. The 
performance of the ranked list is evaluated by first 10 Hit Ratio (HR@10) and 
Normalized Discounted Cumulative Gain (NDCG@10). In other word, HR measures 
whether the positive test item is within the top-10 ranked list, and the NDCG will assign 
higher scores to hits at top ranks. These 2 metrics are calculated for each user and the 
average score is reported. 

Parameters Setting 

We don’t use the pretrained model from the paper. For each model, we initialize model 

parameters with a Gaussian distribution (mean = 0, standard deviation = 0.01). The 

models are trained with Adam optimizer with the batch size of 256. For stacked MLP 

layers, we use [32,16,8] as layer dimensions. 

 

Figure 6: Performance of HR@10 on MovieLens 

 

Figure 7: Performance of NDCG@10 on MovieLens 
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During training process, we will randomly generate 4 negatives instance for each 

positive instance. He et al. term the last hidden layer of NCF as predictive factors. We 

evaluate the factors of [8,16,32]. 

Results 

The following Figure 6, Figure 7, Figure 8 and Figure 9 show the performance of 

HR@10 and NDCG@10 with respect to the number of matrix factorization factors. 

We optimize all the models with log loss. The Figure 10 shows the training loss vs. 

epochs on MovieLens dataset for MLP, GMF, NeuMF, Attribute-aware Deep CF, and 

our proposed model. 

The following tabel1, tabel2, tabel3 and tabel 4 show the performance of HR@10 and 

NDCG@10 with respect to the number of matrix factorization factors. 

Table 1: Movielens HR@10 Results 

#Factors NeuCF GMF AA Deep CF Our 

Model 

8 0.8121 0.7485 0.7773 0.7923 

16 0.8175 0.7774 0.8197 0.8213 

32 0.8275 0.7935 0.8303 0.8304 

 

Figure 8: Performance of HR@10 on Pinterest 

 

Figure 9: Performance of NDCG@10 on Pinterest 
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Figure 10: Training loss of all the models 

Table 2: Movielens NDCG@10 Results 

#Factors NeuCF GMF AA Deep CF Our Model 

8 0.5286 0.5043 0.5176 0.5308 

16 0.567 0.5242 0.5631 0.5668 

32 0.5712 0.5398 0.5788 0.5784 

 

Table 3: Pinterest HR@10 Results 

#Factors NeuCF GMF AA Deep CF Our Model 

8 0.8073 0.8336 0.7773 0.8311 

16 0.799 0.7967 0.8274 0.8323 

32 0.8001 0.7907 0.8241 0.8610 

 

Table 4: Pinterest NDCG@10 Results 

#Factors NeuCF GMF AA Deep CF Our Model 

8 0.5536 0.5574 0.5176 0.5507 

16  0.55 0.5425 0.5694 0.5665 

32 0.5559 0.5465 0.5703 0.5920 

Discussion 

The experimental results strongly underscore the robustness of our proposed model in 
comparison to existing models. Considering both the MovieLens and Pinterest datasets, 
our model consistently outperforms or is highly competitive with other methods across 
the board. 

From the tables 1, 2, 3, and 4, it is evident that our model exhibits superior performance, 
especially with an increase in the number of matrix factorization factors. This 
superiority in HR@10 metrics is particularly significant given that our model is directly 
designed to tap into the rich information available in user-item interactions, without 
compromising on the intrinsic attributes. 

The Attribute-Aware Deep CF (AA Deep CF) model’s underwhelming performance on 
these recommendation tasks came as a surprise. One reason for its subpar results might 
be the pooling layer they adopted. By leveraging user, item, and attribute information, 
the model may inadvertently discard pivotal details, leading to a dilution of 
recommendation quality. Additionally, it’s noteworthy to mention that the AA Deep 
CF model was primarily fashioned for social networks and travel recommendation 
tasks. While it might excel in scenarios with abundant user and item attributes, it 
evidently struggles when confronted with the data constraints of our datasets. The 
confluence of the AA Deep CF model with another model optimized for social network 
relations hints at design decisions which may not necessarily align with our task, and 
thus, the observed performance disparities. 

In summary, our results illuminate the importance of crafting recommendation models 
tailored to the nuances of the dataset in question. Our model, by astutely leveraging 
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both interaction data and inherent attributes, solidifies its place as a formidable 
contender in the recommendation system arena. 

Conclusion 

This research highlights two pivotal advancements in recommendation systems. First, 

we introduced the concept of a Shared User Embedding, which offers a robust solution 

to the cold-start problem by reducing dependence on unstable embeddings. 

Concurrently, our refined matrix factorization approach, utilizing Cross-Attribute 

Interactions, ensures an in-depth comprehension of user-item dynamics, leveraging 

every available attribute. Collectively, these innovations represent a substantial 

progression in providing nuanced and dependable recommendations, indicating an 

optimistic trajectory for subsequent research in this field. 
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