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Abstract

In contemporary data-driven organizations, data lakes have emerged as large-scale,
flexible repositories that integrate heterogeneous data sources—ranging from raw
transactional logs to refined analytical tables. Becuase these ecosystems grow in
complexity, understanding data lineage, i.e., the end-to-end provenance and trans-
formations that data undergo, is necessary for ensuring data quality, regulatory
compliance, and stakeholder trust. This paper offers a comprehensive, technical
overview of approaches to capturing, modeling, storing, and visualizing data lineage
in modern data lakes, with an emphasis on distinguishing coarse-grained lineage
(dataset-level traces) from fine-grained lineage (record- or cell-level provenance).
We begin by examining various automated lineage capture techniques, including
instrumentation of ETL and data pipeline frameworks, logical query parsing, and
runtime provenance tagging. Every technique we discussed involves trade-offs in
performance, accuracy, and integration complexity. We then describe strategies for
modeling lineage at multiple levels of abstraction, from high-level DAG-based de-
pendencies across datasets to detailed provenance graphs for individual records.
Scalability challenges arise in storing and querying lineage at fine granularity,
prompting solutions such as compression, hierarchical aggregation, and delta-based
referencing. We subsequently explore state-of-the-art visualization and interaction
methodologies, discussing how intuitive graph-based dashboards, hierarchical drill-
down views, and interactive queries aid in quickly locating root causes of data
issues, assessing impact on downstream artifacts, and supporting reproducibility.

Keywords: Data governance; Data lakes; Data lineage; Data provenance; ETL
frameworks; Provenance visualization; Scalability challenges

1 Introduction
Modern data-driven organizations increasingly rely on heterogeneous data sources

and large-scale processing pipelines to derive value from their data assets [1]. As

the volume, variety, and velocity of data grow, data lakes have emerged as a com-

mon architectural solution, providing a flexible and scalable repository for raw and

transformed datasets. Data lakes often serve as a foundation for machine learning

https://orcid.org/0009-0008-0726-5403
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Figure 1 Data Lineage Diagram: Visualizing data transformations, joins, aggregations, and
enrichments leading to derived artifacts, with data lineage ensuring traceability and accountability.

models, real-time analytics, and business intelligence applications, enabling organi-

zations to break down silos and support diverse computational workloads. Despite

their promise, data lakes present novel challenges: as data moves through complex

series of transformations, joins, aggregations, and enrichments, it becomes critical

to maintain detailed knowledge about how data was produced. This knowledge is

encapsulated by data lineage, a record of the “journey” data takes from raw sources

to derived artifacts [2].

Data lineage is essential not only for compliance—such as ensuring adherence

to GDPR or other regulatory standards—but also for assessing data quality, di-

agnosing pipeline issues, facilitating reproducibility of analyses, and building trust

among stakeholders. At a fundamental level, lineage helps data consumers under-

stand where a given dataset or data point came from, what transformations were

applied, and what intermediate artifacts influenced its current state.

Data lineage can be viewed at different levels of abstraction. Coarse-grained lin-

eage describes lineage at a dataset-to-dataset or table-to-table level, offering a broad

overview of data flows and dependencies. Fine-grained lineage, by contrast, captures

lineage at the level of individual records, cells, or even values, providing detailed

traceability that can support highly nuanced debugging and compliance checks.

While both forms of lineage are valuable, their capture, modeling, storage, and vi-

sualization pose distinct technical challenges. This paper offers a deep, descriptive

overview of current approaches and emerging techniques in these areas, with par-

ticular emphasis on fully automated solutions that integrate into modern data lake

ecosystems.

2 Background and Motivation
Data lakes have emerged as a critical architecture for organizations aiming to cen-

tralize and scale their data management practices. By serving as vast repositories
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for raw and semi-structured data, they allow enterprises to collect information from

a diverse range of sources, including transactional databases, streaming platforms,

sensor networks, and external data providers. Once ingested, these raw datasets are

transformed, processed, and analyzed through a multitude of tools such as SQL

queries, ETL (Extract, Transform, Load) pipelines, Spark jobs, Python scripts, and

machine learning workflows. However, the sheer complexity of these processes and

the diversity of tools involved present a unique challenge: understanding how each

refined dataset, metric, or insight has been generated. This is where the concept of

data lineage becomes indispensable.

Data lineage refers to the end-to-end traceability of data as it moves through an or-

ganization’s ecosystem, capturing the relationships, transformations, and processes

applied to it. In data lakes, where data flows are inherently nonlinear and involve a

variety of interconnected systems, robust lineage tracking serves as a foundational

capability for ensuring that data remains trustworthy, auditable, and operationally

resilient. Below, we explore four critical aspects of why data lineage is essential in

data lakes, emphasizing its role in governance, quality assurance, impact analysis,

and reproducibility.

The first and perhaps most significant benefit of data lineage is its centrality

to data governance and compliance efforts. Modern regulations such as GDPR,

HIPAA, and the CCPA require organizations to not only safeguard sensitive data

but also maintain comprehensive audit trails detailing how data is processed, trans-

formed, and shared. Without lineage, compliance with these stringent requirements

becomes both challenging and risky. For example, a healthcare provider managing

sensitive patient data needs to ensure that every transformation and processing step

complies with privacy regulations. Lineage allows the organization to demonstrate

adherence to such regulations by clearly mapping out the sequence of operations

performed on each dataset. This ability to produce a verifiable chain of custody is

invaluable during audits, enabling organizations to substantiate their compliance

with both internal policies and external regulations [3].

Beyond compliance, data lineage plays a pivotal role in assuring data quality and

fostering trust in analytical outputs. Data quality issues often propagate through

systems, with errors in upstream data sources cascading into downstream models,

dashboards, and reports. Lineage facilitates the identification of these upstream de-

pendencies, allowing data engineers to pinpoint the exact transformation or data

source responsible for anomalies [3]. For instance, if a machine learning model pro-

duces unexpected predictions, lineage tracking can trace the issue back to a specific

transformation step or dataset update that may have introduced inaccuracies. By

enabling rapid identification and resolution of such issues, lineage not only improves

the reliability of data but also bolsters confidence in the insights derived from it.

Another critical dimension of data lineage is its utility for impact analysis and

change management. Data engineers and architects frequently face the challenge of

making modifications to datasets, schemas, or processing workflows without inad-

vertently breaking downstream applications, dashboards, or analytical models. Lin-

eage graphs offer a visual representation of these dependencies, showing precisely

which downstream components will be affected by a given change. This capability

allows teams to assess the potential risks associated with updates and implement
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safeguards to mitigate unintended consequences. For example, deprecating a rarely

used dataset might appear to be a minor change, but lineage analysis could reveal

that the dataset is indirectly powering a high-priority executive dashboard. By pro-

viding this visibility, lineage not only prevents disruptions but also enables more

informed decision-making.

Finally, the importance of data lineage extends to the domains of reproducibility

and debugging, particularly in the context of complex data science workflows. As

organizations increasingly rely on machine learning and advanced analytics, the

ability to reproduce experiments and trace results becomes paramount. Data lineage

acts as a blueprint for these processes, detailing every step in the data preparation

and analysis pipeline. For example, a data scientist investigating why a predictive

model underperformed on a recent dataset can consult the lineage graph to recreate

the exact environment and transformations used during the model’s training phase.

This ability to simulate and re-run workflows ensures that insights are reproducible

and experiments are interpretable, fostering a culture of transparency and rigor

within the organization [4].

To further illustrate the utility of data lineage, we present two tables highlighting

key challenges in managing data lakes and the corresponding solutions enabled by

robust lineage tracking. The first table provides an overview of common problems

faced in data governance, quality assurance, and operational efficiency. The sec-

ond table outlines practical use cases of lineage in data lakes, demonstrating its

applicability across various industries.

Table 1 Challenges in Managing Data Lakes and the Role of Data Lineage

Challenge Description and Role of Data Lineage
Data Governance Difficulty in demonstrating compliance with regulatory require-

ments. Data lineage provides a verifiable audit trail to ensure
regulatory adherence.

Data Quality Issues Propagation of errors from upstream sources to downstream sys-
tems. Lineage enables identification of root causes and ensures
quicker resolution.

Impact of Changes Unintended disruptions caused by altering or deprecating
datasets. Lineage offers a dependency map for assessing the im-
pact of changes.

Reproducibility Lack of clarity on how specific metrics or models were generated.
Lineage serves as a blueprint for re-running workflows.

Table 2 Practical Use Cases of Data Lineage in Data Lakes

Use Case Application and Benefits
Regulatory Reporting Financial institutions using lineage to validate the accuracy of

reports submitted to regulators, ensuring compliance with laws
such as Basel III.

Root Cause Analysis Telecom companies tracing dropped call metrics back to faulty
data transformations in network event logs.

Pipeline Optimization E-commerce platforms identifying redundant processing steps in
recommendation engine pipelines, reducing latency.

Model Debugging Pharmaceutical firms recreating model training environments to
understand discrepancies in clinical trial predictions.

3 Coarse-Grained vs. Fine-Grained Lineage
In modern data management systems, particularly in the context of large-scale

data lakes, data lineage represents a foundational mechanism for tracking the ori-

gin, transformations, and dependencies of data throughout its lifecycle. Lineage
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Figure 2 Comparison of Coarse-grained and Fine-grained Data Lineage: Coarse-grained lineage
tracks dataset-level dependencies, while fine-grained lineage provides granular traceability at the
level of individual records, cells, or values.

provides critical traceability to support data governance, debugging, auditing, and

reproducibility. The granularity of lineage tracking determines its utility for specific

applications and can broadly be divided into two categories: coarse-grained lineage

and fine-grained lineage. Each of these approaches captures data dependencies at

different levels of detail, with coarse-grained lineage focusing on dataset-level rela-

tionships and fine-grained lineage capturing record- or attribute-level dependencies.

Both forms of lineage play a vital role in ensuring that data systems are transparent,

reliable, and maintainable [4].

Coarse-grained lineage refers to the tracking of lineage at the level of datasets,

tables, or broader data abstractions. It captures how datasets are derived from

other datasets, detailing the sequence of operations that connect input and output

entities. For example, a coarse-grained lineage model might specify that Dataset A

was generated by performing a join operation between Dataset B and Dataset C,

followed by filtering rows based on specific conditions. Coarse-grained lineage is

comparatively straightforward to capture and requires minimal storage and com-

putational resources because it does not include details about individual records,

rows, or columns. This simplicity makes it particularly effective for providing a

high-level overview of data dependencies and transformations, which is valuable for

data governance, cataloging, and change management.

A practical application of coarse-grained lineage is in impact analysis, where it

helps determine which downstream datasets, dashboards, or applications might

be affected by modifications to an upstream dataset or process. For example, if

Dataset X is slated for deprecation, coarse-grained lineage can reveal that Dataset Y

and Dataset Z depend on Dataset X, allowing stakeholders to assess the risks and

prepare for downstream impacts. Additionally, coarse-grained lineage supports com-

pliance with regulatory and organizational data governance requirements by main-

taining a clear record of the provenance and transformations applied to datasets.

Organizations can use this form of lineage to demonstrate adherence to regula-

tory frameworks such as GDPR or CCPA, particularly when audit trails must be

presented to external or internal auditors.

However, coarse-grained lineage is not without its limitations. By focusing on

datasets as whole entities, it does not provide insight into how individual data
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points are processed or transformed. For instance, if an anomaly is detected in a

derived dataset, coarse-grained lineage can identify the source datasets involved but

cannot trace the specific record or transformation that caused the issue. Similarly,

this lack of detail makes coarse-grained lineage unsuitable for use cases that require

granular traceability, such as debugging data pipelines or verifying the correctness

of individual calculations in analytics workflows [5].

Fine-grained lineage addresses these limitations by offering a more detailed view of

data transformations and dependencies. Unlike coarse-grained lineage, fine-grained

lineage tracks data at the level of individual records, rows, columns, or even cells.

This approach captures how specific data points in a target dataset were derived

from corresponding data points in one or more source datasets, along with the

transformations applied. For example, in a data pipeline that aggregates sales data,

fine-grained lineage can trace a particular sales figure in the final report back to

individual transactions in the raw input data. This level of granularity is particularly

useful for tasks requiring high precision, such as debugging, compliance auditing,

and validating machine learning models.

Fine-grained lineage is invaluable for root cause analysis in scenarios where data

quality issues arise. Suppose a downstream dashboard reports incorrect metrics, and

fine-grained lineage is available. Engineers can use the lineage information to trace

the issue back to a specific row or transformation step in the upstream process,

thereby isolating the error with precision. Similarly, in industries with stringent

regulatory requirements, such as healthcare and finance, fine-grained lineage allows

organizations to demonstrate detailed traceability for individual data points. This

can be critical during audits, where regulators may require evidence of how specific

records were processed and used in decision-making systems.

Despite its benefits, capturing and maintaining fine-grained lineage is a complex

and resource-intensive process. Fine-grained lineage systems generate significantly

more metadata than their coarse-grained counterparts, necessitating advanced stor-

age and computational capabilities to manage the additional overhead. Addition-

ally, the complexity of implementing fine-grained lineage increases with the scale

of the data lake and the intricacy of the transformations involved. For example,

in environments with millions of records and dozens of interconnected processing

pipelines, maintaining fine-grained lineage requires not only sophisticated lineage

tracking mechanisms but also efficient methods for querying and visualizing the

resulting metadata. This complexity often necessitates trade-offs, as organizations

must balance the benefits of fine-grained traceability against the costs and feasibility

of implementation.

Modern data ecosystems increasingly demand both coarse-grained and fine-

grained lineage, as each serves distinct yet complementary purposes. Coarse-grained

lineage is ideal for understanding macro-level data flows, supporting governance,

and performing high-level impact analysis. It provides an overview of dependencies

and transformations without delving into operational details. Fine-grained lineage,

on the other hand, is essential for use cases that require detailed traceability, such

as debugging, auditing, and ensuring data correctness. By integrating both forms

of lineage into their data management practices, organizations can achieve a com-

prehensive understanding of their data systems while addressing a wide range of

operational and analytical needs [6].
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The following tables provide a comparative overview of coarse-grained and fine-

grained lineage, as well as examples of use cases where each approach is particularly

effective. These tables illustrate how the two types of lineage complement each other

and highlight their respective advantages and limitations.

Table 3 Comparison of Coarse-Grained and Fine-Grained Lineage

Attribute Coarse-Grained Lineage
Granularity Captures relationships at the dataset or table level.
Primary Purpose Provides high-level insights into data dependencies and transfor-

mations.
Ease of Implementation Easier to implement and store due to reduced complexity.
Use Cases Impact analysis, governance, data cataloging.
Limitations Insufficient for debugging or tracing individual records.
Attribute Fine-Grained Lineage
Granularity Tracks dependencies and transformations at the record, row, or

column level.
Primary Purpose Enables detailed traceability for debugging, auditing, and preci-

sion analysis.
Ease of Implementation Complex and resource-intensive to implement and maintain.
Use Cases Root cause analysis, regulatory compliance, model validation.

Table 4 Use Cases for Coarse-Grained and Fine-Grained Lineage

Type of Lineage Example Use Cases and Benefits
Coarse-Grained Lineage Mapping dependencies between datasets in an enterprise data

catalog for governance purposes.
Coarse-Grained Lineage Identifying downstream systems affected by changes to an up-

stream dataset.
Fine-Grained Lineage Tracing errors in a derived dataset to specific rows or columns in

the source dataset for debugging.
Fine-Grained Lineage Demonstrating detailed audit trails for individual records in com-

pliance with GDPR or HIPAA.

4 Automated Lineage Capture Techniques
4.1 Instrumentation in ETL and Data Pipeline Tools

The use of instrumentation within ETL (Extract, Transform, Load) and data

pipeline tools represents a well-established approach for capturing data lineage in

automated and scalable ways. Instrumentation involves configuring or extending

existing frameworks, such as Apache Spark, Apache Flink, and Apache Airflow, to

log metadata about data transformations and dependencies. By embedding lineage

tracking capabilities directly into these execution frameworks, organizations can

capture detailed information about how datasets are created, modified, and prop-

agated through their pipelines. This section explores the mechanisms, challenges,

and practical applications of instrumentation-based lineage tracking and provides

examples of its implementation in modern data engineering environments.

Instrumentation in ETL and pipeline tools typically operates by integrating with

the internal mechanisms of these frameworks. For instance, in Apache Spark, lineage

can be captured by leveraging its logical and physical execution plans. When a Spark

job performs a join operation between two datasets, Dataset X and Dataset Y, an

instrumentation plugin can log that these datasets contributed to the generation

of Dataset Z. Similarly, filtering operations, column mappings, and aggregations

can be tracked at a transformation-step level. In Apache Airflow, custom lineage

plugins can record relationships between tasks and the datasets they produce or

consume, creating a graph of task dependencies and their associated outputs. This
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Figure 3 Automated Lineage Capture in ETL and Data Pipelines: Illustrating the use of
frameworks like Apache Spark, Flink, and Airflow to instrument and log metadata, enabling
lineage tracking at both dataset and transformation levels.

process enables detailed lineage capture that is closely aligned with the underlying

execution logic [7].

One of the significant advantages of instrumentation-based lineage tracking is its

ability to integrate deeply with the execution frameworks. These tools often main-

tain detailed internal metadata, such as Spark’s logical plans or Flink’s dataflow

graphs, which describe the transformations applied to data. By accessing and inter-

preting this metadata, instrumentation mechanisms can deduce lineage information

efficiently and with high accuracy. For example, in Apache Spark, the logical plan

provides a structured representation of the query, detailing operations like joins and

filters, while the physical plan specifies the execution strategy. This dual-layered in-

formation allows for precise tracking of both coarse-grained lineage (relationships

between datasets) and fine-grained lineage (dependencies at the row or column

level).

Real-time lineage capture is another key feature of instrumentation-based ap-

proaches. Data pipeline frameworks, particularly those designed for streaming appli-

cations, process data continuously, making real-time lineage tracking a critical capa-

bility. Apache Flink, for example, supports lineage capture for streaming pipelines

by monitoring operations such as windowed aggregations and stateful computa-

tions. In scenarios where immediate traceability is required—such as detecting and

resolving errors in a streaming analytics system—real-time lineage enables prompt

debugging and issue resolution.
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Despite these benefits, instrumentation-based lineage tracking also presents sev-

eral challenges. One major limitation is the need for deep integration with the tools

being instrumented. Not all ETL or pipeline frameworks provide robust APIs or

mechanisms for capturing lineage metadata, requiring significant customization or

development effort. For example, while Apache Spark offers well-defined constructs

for accessing its logical and physical plans, other frameworks may require invasive

modifications to their internal execution logic. Moreover, capturing fine-grained

lineage—such as tracing individual rows or columns through complex transforma-

tions—introduces computational overhead and can degrade pipeline performance.

For instance, recording lineage for every record in a high-throughput streaming

pipeline may increase latency and storage costs significantly.

Another challenge relates to the heterogeneity of modern data ecosystems. Orga-

nizations often employ multiple ETL tools and pipeline frameworks, each with its

unique lineage capabilities and limitations. Integrating lineage across these disparate

systems requires careful coordination and often necessitates the use of external

lineage tools or centralized metadata repositories. Hybrid approaches, which com-

bine instrumentation with external post-processing or log analysis, are frequently

adopted to address these complexities.

The following subsections illustrate practical examples of instrumentation-based

lineage tracking in widely used frameworks and tools. These examples, along with

Tables 5 and 6, highlight the diverse applications and trade-offs of this approach.

4.1.1 Examples of Instrumentation-Based Lineage in Popular Frameworks

In Apache Spark, instrumentation-based lineage tracking is typically implemented

using its logical plan. For example, consider a Spark job that processes sales data

by joining transaction records with customer details, followed by aggregating total

sales per region. The logical plan for this job can be analyzed to deduce that the

final dataset is derived from two source datasets, with details about the join condi-

tions and the applied aggregations. This lineage metadata can then be stored in a

centralized repository for downstream analysis and governance [8].

Apache Flink provides another compelling example. In a streaming application

that monitors network traffic, lineage can be captured by tracking how individual

network events are processed through windowed aggregations and key-based state

computations. For instance, a lineage plugin might log that a specific anomaly de-

tection alert is derived from events originating from three different network sensors,

processed through a sliding window aggregation. This real-time lineage informa-

tion can be critical for debugging and improving the accuracy of anomaly detection

models.

In Apache Airflow, instrumentation-based lineage tracking can be achieved

through the use of custom plugins or extensions. For example, in a pipeline that

orchestrates ETL jobs for loading customer data into a data warehouse, a lineage

plugin can record that Task A generates Dataset 1, which is then consumed by

Task B to produce Dataset 2. This task-level lineage can provide valuable insights

into the dependencies between pipeline components and help identify bottlenecks

or failures.
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Table 5 Capabilities and Challenges of Instrumentation-Based Lineage Tracking

Aspect Description
Integration with Frameworks Leverages the internal structures of ETL and pipeline tools (e.g.,

Spark’s logical plans) for efficient lineage capture.
Real-Time Capture Enables lineage tracking in real-time, especially in streaming

pipelines such as those implemented in Apache Flink.
Granularity Supports coarse-grained lineage by default; fine-grained lineage

tracking may require additional logic, increasing complexity.
Implementation Complexity Requires deep integration with tools and may involve custom

development for frameworks lacking robust lineage APIs.
Performance Impact Capturing fine-grained lineage may introduce computational

overhead, especially for large-scale or streaming workloads.

Table 6 Examples of Instrumentation-Based Lineage Tracking in Frameworks

Framework Instrumentation Approach and Features
Apache Spark Captures lineage by analyzing logical and physical plans. Exam-

ple: Tracking joins, filters, and aggregations in batch pipelines.
Apache Flink Logs lineage in real-time for streaming data. Example: Tracing

alert generation in anomaly detection pipelines.
Apache Airflow Uses custom plugins to log task-level lineage. Example: Recording

dependencies between ETL jobs in data orchestration workflows.
Custom ETL Tools Implements bespoke instrumentation for lineage capture. Exam-

ple: Proprietary ETL pipelines logging transformation histories for
audit trails.

As demonstrated in Tables 5 and 6, this approach is best complemented with

other lineage tracking strategies to achieve comprehensive coverage in diverse data

ecosystems.

4.2 Query Parsing and Logical Plan Analysis

SQL queries, as a dominant paradigm for defining data transformations and manip-

ulations in data lakes and relational systems, provide a rich source of information for

lineage tracking. By analyzing SQL statements, it is possible to infer how datasets

are transformed, which columns contribute to downstream outputs, and the rela-

tionships between source and target datasets. SQL lineage analysis can operate at

multiple levels of granularity, ranging from coarse-grained tracking of table-to-table

dependencies to fine-grained tracking of column-level and row-level relationships.

This approach, however, is not without limitations, particularly when dealing with

dynamic, user-defined, or non-declarative transformations.

At the coarse-grained level, SQL query analysis identifies dependencies between

source and target tables. For example, consider the following SQL query:

SELECT a.id, b.value

FROM TableA a

JOIN TableB b ON a.key = b.key

WHERE b.status = ’ACTIVE’;

This query indicates that the resulting target dataset derives its data from two

source tables: TableA and TableB. Coarse-grained lineage can be extracted by not-

ing that TableA and TableB are input dependencies for the target dataset. Such

lineage provides a high-level view of the data flow, which is particularly useful for

tasks such as impact analysis, governance, and cataloging. For instance, if TableA is

modified or deprecated, lineage analysis can identify downstream datasets or reports

that depend on it, allowing stakeholders to assess and mitigate the impact.

Fine-grained lineage provides more detailed insights by analyzing how specific

columns and rows in source datasets contribute to target datasets. In the above
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query, it can be inferred that the id column in the target dataset maps directly to the

id column from TableA, while the value column maps to value in TableB. Further-

more, the JOIN condition (a.key = b.key) and the filter (b.status = ’ACTIVE’)

provide additional context, indicating that only rows satisfying these criteria are

included in the target dataset.

This level of detail is critical for debugging and auditing. For example, if a down-

stream report contains anomalies in the value column, fine-grained lineage can

trace the issue back to specific records or transformations in TableB. Fine-grained

lineage also supports reproducibility by providing a precise mapping of how each

target column or row is derived from its inputs, allowing for accurate reconstruction

of transformations on new data.

Achieving fine-grained lineage from SQL queries often requires the construction

of a logical query plan, which represents the sequence of operations (e.g., joins,

filters, projections) needed to execute the query. Logical plans serve as a blueprint

for understanding data transformations and are essential for lineage inference at a

granular level. Tools such as Apache Calcite, which parses SQL queries into logical

plans, or query engines like Spark SQL, which produce detailed execution plans,

can be used to extract and analyze lineage metadata.

While SQL query analysis provides a structured and deterministic way to infer

lineage, it faces several challenges, particularly when dealing with advanced or non-

standard transformations. One notable challenge is the use of dynamic SQL or

transformations defined at runtime. For example, queries generated by applications

or scripts with dynamic parameters may not have a static structure, complicating

lineage extraction. Another challenge arises from user-defined functions (UDFs) and

procedural extensions like PL/SQL, where data transformations are encapsulated

within custom code. These black-box transformations obscure the logic, requiring

additional effort to parse or reverse-engineer lineage.

Further complexity arises in cases involving intermediate datasets or nested

queries. For example:

WITH Filtered AS (

SELECT id, key FROM TableA WHERE status = ’ACTIVE’

)

SELECT f.id, b.value

FROM Filtered f

JOIN TableB b ON f.key = b.key;

Here, the intermediate dataset Filteredmust first be analyzed to trace its lineage

back to TableA, before mapping the final output to both TableA and TableB. Sim-

ilarly, handling complex aggregations, window functions, and recursive queries re-

quires sophisticated lineage extraction techniques to ensure completeness and accu-

racy. certain transformations defy traditional logical analysis. For example, machine

learning feature generation often involves embedding SQL queries within workflows

that apply additional, non-SQL transformations. In such cases, logical analysis of

SQL alone is insufficient, and integration with external tools or lineage capture

mechanisms is necessary.

SQL-based lineage analysis is most effective when combined with other lineage

tracking techniques, such as instrumentation or log analysis. For instance, instru-

mentation can provide runtime lineage metadata for black-box transformations,
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while SQL analysis captures declarative relationships. Table 7 illustrates several

examples of SQL queries and their corresponding lineage outputs, while Table 8

summarizes common challenges and strategies for overcoming them.

Table 7 Examples of SQL Queries and Corresponding Lineage Outputs

SQL Query Lineage Output

SELECT id, value
FROM TableA
WHERE status = ’ACTIVE’;

Target columns (id, value) map to
source columns in TableA. Rows are fil-
tered based on the condition status =
’ACTIVE’.

SELECT a.id, b.value
FROM TableA a
JOIN TableB b
ON a.key = b.key;

Target column id derives from
TableA.id, and value derives from
TableB.value. JOIN condition estab-
lishes row-level dependencies.

WITH Aggregated AS (
SELECT region, SUM(sales) \\ AS total_sales
FROM Transactions
GROUP BY region

)
SELECT * FROM Aggregated;

Target dataset columns (region,
total sales) derive from source
columns in Transactions. Grouping
creates new derived relationships at the
row level.

Table 8 Challenges in SQL Lineage Analysis and Mitigation Strategies

Challenge Mitigation Strategy
Dynamic SQL Queries Capture and log runtime query structures for analysis. Leverage

query templates for consistent lineage extraction.
User-Defined Functions Analyze UDF logic separately or instrument UDF execution for

lineage metadata capture.
Intermediate Datasets Parse query plans to trace lineage through temporary views or

subqueries.
Non-SQL Transformations Combine SQL-based analysis with external lineage tracking tools

or instrumentation.

4.2.1 Runtime Data Tracking for Lineage Capture

Runtime data tracking represents a sophisticated and highly granular approach to

capturing data lineage. Unlike static methods such as SQL analysis or instrumen-

tation, runtime tracking propagates unique identifiers or provenance tags through

the data processing pipeline at execution time. By annotating individual records

as they traverse the pipeline, this technique enables precise traceability, allowing

data engineers to backtrack the final output dataset to its exact source records and

transformations. While this approach offers unmatched accuracy, it also introduces

computational and storage overhead, requiring careful consideration of trade-offs in

large-scale data environments.

The core concept of runtime tracking is to attach a unique provenance tag to

each record in the source dataset. These tags, often implemented as metadata at-

tributes, are propagated through the processing pipeline as transformations such

as joins, filters, and aggregations are applied. For example, consider a dataset

CustomerTransactions in which each transaction record is annotated with a unique

tag at ingestion. When this dataset is joined with a CustomerProfiles dataset, the

lineage system combines the tags from both datasets to produce a new composite

tag for the resulting records in the output. Similarly, filters preserve the tags of

records that pass the specified condition, ensuring that the lineage of the filtered

output can be traced back to the original source.
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This approach effectively embeds lineage information directly into the data itself.

At the conclusion of the pipeline, the output dataset contains a ”lineage finger-

print,” enabling engineers to reconstruct the entire data flow for each record. For

example, if a report generated from the output dataset contains anomalies, the

lineage fingerprint can be used to identify the exact source records and transforma-

tions that contributed to the problematic rows, facilitating targeted debugging and

correction.

One of the most significant advantages of runtime data tracking is its ability to

produce fine-grained lineage with exceptional accuracy. Unlike coarse-grained tech-

niques that capture lineage at the table or dataset level, runtime tracking operates

at the level of individual records, rows, or even specific data points. This level of

granularity is particularly valuable in industries with stringent compliance and au-

dit requirements, such as healthcare or finance, where organizations must provide

detailed traceability for sensitive or regulated data.

Moreover, runtime tracking is inherently dynamic, capturing lineage in real time

as data is processed. This ensures that lineage information reflects the actual ex-

ecution of the pipeline, accounting for runtime conditions such as dynamic filters,

data-dependent branching, or variations in data distributions. For example, in a

streaming pipeline for fraud detection, runtime tracking can dynamically propagate

tags through sliding window aggregations, enabling precise identification of which

transaction records contributed to a flagged anomaly.

The most notable of these is the computational and memory overhead associated

with propagating tags through the pipeline. For large-scale data lakes containing

billions of records, annotating and tracking tags for each record can result in sig-

nificant increases in storage requirements and processing times. For example, in a

pipeline that processes petabytes of log data, the additional metadata generated by

runtime tracking could exceed the size of the original data itself, straining system

resources and increasing costs.

Another limitation is the complexity of handling operations that aggregate or

transform data in ways that obscure individual record-level provenance. Aggre-

gations, for instance, combine multiple input records into a single output record,

requiring the system to encode the lineage of all contributing records within the re-

sulting tag. This can lead to metadata ”explosion,” where the size of the tags grows

disproportionately with the complexity of the transformations. Joins and nested

transformations further exacerbate this issue, as they often involve combining mul-

tiple datasets with independent provenance tags [9].

4.3 Optimizations for Runtime Tracking

To address the computational and storage overheads associated with runtime track-

ing, several optimization techniques have been proposed:

1 Instead of maintaining exact tags for every record, probabilistic techniques

encode lineage information using compact data structures such as Bloom fil-

ters. While this approach sacrifices some accuracy, it significantly reduces the

size of the metadata, making runtime tracking feasible for large-scale systems.

2 Sampling involves tracking lineage for a representative subset of records rather

than the entire dataset. By analyzing the lineage of the sampled records, en-

gineers can infer patterns and dependencies without incurring the overhead of
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full-scale tracking. This approach is particularly useful for exploratory analysis

or scenarios where approximate lineage suffices.

3 Compression techniques can be applied to reduce the storage footprint of

provenance tags. For example, hierarchical encoding can compactly repre-

sent tags for aggregated records by grouping them according to their source

datasets.

4 In many cases, fine-grained lineage is only needed for specific portions of the

pipeline or for particular datasets. By selectively enabling runtime tracking for

critical transformations or datasets, organizations can balance the trade-off

between granularity and overhead.

Runtime tracking has been implemented in various systems to support fine-grained

lineage for complex data workflows. Table 9 provides illustrative examples of run-

time tracking mechanisms and their applications in different frameworks.

Table 9 Examples of Runtime Data Tracking for Lineage

System/Framework Runtime Tracking Mechanism and Application
Apache Spark Propagates provenance tags through RDD transformations, en-

abling record-level traceability in batch and streaming pipelines.
Apache Flink Supports custom tagging for records in streaming pipelines, with

tags propagating through windowed aggregations and stateful
computations.

Scientific Workflow Systems Uses runtime tracking to annotate and trace intermediate
datasets in workflows for computational biology or climate mod-
eling.

Proprietary Data Lakes Implements hierarchical tagging schemes for tracking lineage in
multi-stage ETL pipelines with aggregations and joins.

• Runtime data tracking is particularly effective for use cases requiring high

levels of granularity and precision. For example:

• Organizations in regulated industries can use runtime tracking to provide

detailed audit trails that map specific outputs to their source records, ensuring

compliance with regulations like GDPR or HIPAA.

• When anomalies or errors are detected in downstream systems, runtime track-

ing enables engineers to trace issues back to the exact records or transforma-

tions responsible.

• In environments with rapidly changing data or runtime conditions, real-time

runtime tracking provides immediate visibility into how data flows through

the pipeline.

Table 10 summarizes the main challenges associated with runtime tracking and

the strategies employed to address them.

Table 10 Challenges and Optimizations in Runtime Data Tracking

Challenge Optimization Strategy
High Memory and Storage Over-
head

Use probabilistic or sampling-based lineage to reduce metadata
size.

Metadata Explosion in Aggrega-
tions

Compress provenance tags using hierarchical or compact encod-
ing techniques.

Complex Joins and Nested
Transformations

Track composite tags and selectively enable tracking for critical
transformations.

Performance Impact on Large
Pipelines

Implement selective tracking or optimize metadata propagation
algorithms.

Runtime data tracking offers a highly accurate and fine-grained method for cap-

turing data lineage by propagating provenance tags through the data pipeline dur-

ing execution. While it provides unmatched precision for traceability and auditing,
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the associated computational and storage costs necessitate careful consideration of

optimizations such as probabilistic techniques, sampling, and metadata compres-

sion. As illustrated in Tables 9 and 10, runtime tracking is used in applications

requiring detailed record-level lineage, such as regulatory compliance, debugging,

and dynamic data environments.

4.4 Hybrid Approaches

In many real-world scenarios, organizations adopt hybrid approaches that com-

bine coarse-grained lineage derived from query parsing with selective, on-demand

fine-grained lineage capture using runtime tracking. This hybrid model can be or-

chestrated by lineage management systems that determine the required level of

granularity for each dataset and adapt accordingly. Such an adaptive approach can

balance performance, storage requirements, and accuracy.

5 Modeling and Storing Lineage Information
Efficiently modeling and storing data lineage is critical for enabling traceability, gov-

ernance, and reproducibility in modern data systems. Given the diversity in gran-

ularity requirements—ranging from coarse-grained (dataset-level) to fine-grained

(record- or cell-level)—designing metadata models and storage systems involves ad-

dressing challenges related to scalability, performance, and flexibility. This section

examines common approaches for modeling lineage information, focusing on meta-

data models for coarse-grained and fine-grained lineage, and explores techniques to

address the scalability and performance challenges associated with storing lineage

in large-scale data lakes.

Coarse-grained lineage models represent dependencies and transformations at the

dataset or table level, offering a high-level view of data flows within a system. A com-

mon representation for coarse-grained lineage is the directed acyclic graph (DAG),

where nodes correspond to datasets, and edges denote transformations or data de-

pendencies. For example, an edge from Dataset Y and Dataset Z to Dataset X in-

dicates that Dataset X was derived from the union or transformation of Dataset Y

and Dataset Z. Such models provide clear visualizations and allow users to trace

upstream or downstream dependencies efficiently.

Graph databases such as Neo4j, JanusGraph, or TigerGraph are well-suited for

storing coarse-grained lineage due to their natural alignment with DAG structures.

These systems allow lineage information to be queried flexibly, enabling users to

trace the lineage of a specific dataset or transformation step. For instance, a user

querying the lineage of Dataset X might retrieve all upstream datasets contributing

to it, along with the specific transformation types (e.g., joins, filters, aggregations).

Additionally, graph databases can integrate with other metadata sources, such as

schema details or governance tags, enabling multi-dimensional queries. For example,

a query might return not only the upstream datasets but also their associated

schema versions and compliance labels.

To add granularity to coarse-grained lineage models, column-level lineage

metadata maps individual columns in target datasets to their source columns.

For instance, if Dataset X.column 1 is derived from Dataset Y.column A and

Dataset Z.column B, this mapping can be recorded in structured formats such
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as JSON, Avro, or Parquet. Metadata catalogs such as Apache Hive Metastore

and Apache Atlas support this type of lineage modeling by extending the schema

definitions to include column-level mappings. Column-level lineage metadata is par-

ticularly valuable for identifying the specific input columns that contribute to an

erroneous output column, enabling more focused debugging and impact analysis.

5.1 Models for Fine-Grained Lineage

Fine-grained lineage models capture dependencies at the level of individual records

or cells, providing precise traceability for high-resolution debugging, compliance,

and reproducibility. However, modeling and storing fine-grained lineage present sig-

nificant challenges due to the sheer volume of metadata generated in large-scale

systems. Several approaches have been proposed to address these challenges [10].

Fine-grained lineage can theoretically be modeled as a provenance graph where

each record is a node, and edges represent the relationships between records in

source and target datasets. For example, if a record in Dataset X is derived from

two records in Dataset Y and Dataset Z, the provenance graph would include nodes

for each of these records and edges connecting them. While this approach provides

unparalleled granularity, it results in extremely large graphs that are impractical

to store or query directly. Segmentation or compaction strategies can alleviate this

challenge by grouping similar records or storing transformations separately from

the data references.

To reduce storage overhead, compressed representations of fine-grained lineage

summarize dependencies for groups of records sharing similar provenance. For in-

stance, if multiple records in the target dataset are derived from the same set of

source records, a single lineage reference can be stored for the entire group. Al-

ternatively, hashes or signatures of source records can be used instead of storing

full references, enabling partial reconstruction of lineage when needed. These tech-

niques significantly reduce metadata volume while preserving the ability to trace

dependencies at a record level.

Fine-grained lineage can also be coupled with data versioning systems such as

Delta Lake or LakeFS, which track changes at a granular level. By referencing the

exact snapshot of a source dataset that contributed to a downstream record, delta-

based storage systems enable precise lineage reconstruction. For example, if a record

in Dataset X is derived from a specific version of Dataset Y, the lineage metadata

would include a pointer to the relevant snapshot in Dataset Y. This approach tightly

integrates lineage tracking with version control, facilitating reproducibility and de-

bugging but introducing additional complexity in terms of metadata management

[11].

5.2 Scalability and Performance Considerations

Storing lineage information for large-scale data lakes poses significant scalability

challenges, particularly when dealing with fine-grained lineage. Efficient storage

systems must balance the trade-off between metadata granularity, storage costs,

and query performance.

Distributed graph databases or metadata repositories can partition lineage data

by dataset, partition, or time, enabling horizontal scaling. For example, lineage for
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a dataset processed in daily partitions can be stored separately for each partition,

allowing lineage queries to target specific subsets of data. Partitioning by trans-

formation type or lineage depth (e.g., immediate parents versus full ancestry) can

further improve query performance by narrowing the scope of metadata retrieval

[12].

Frequently accessed lineage queries, such as tracing all inputs to a specific dataset,

can be precomputed and stored as materialized views. For example, a materialized

view might store the full upstream dependency graph for a high-priority dataset, en-

abling rapid retrieval without recomputation. Similarly, caching lineage information

for recent or commonly queried datasets can reduce the latency of lineage queries

in interactive systems.

For less frequently accessed lineage queries, systems can defer detailed computa-

tion until the query is issued. For instance, coarse-grained lineage may be stored

upfront, while fine-grained lineage is reconstructed on demand using compressed or

summarized metadata. This approach minimizes storage costs but trades off higher

query latency for infrequently accessed lineage details [13].

5.3 Examples of Metadata Storage Models

Table 11 summarizes common models for storing coarse-grained and fine-grained

lineage, while Table 12 outlines techniques for scaling lineage storage to meet the

demands of large-scale data systems.

Table 11 Lineage Metadata Models and Storage Approaches

Model Description and Example Use Cases
Coarse-Grained Lineage DAG representation of dataset-level dependencies. Example:

Neo4j storing dataset derivation paths for impact analysis.
Column-Level Lineage Maps target columns to source columns using JSON or Avro. Ex-

ample: Debugging column-level transformations in Apache Atlas.
Fine-Grained Provenance
Graphs

Record-level dependency graphs for precise traceability. Example:
Research workflows tracking intermediate results.

Compressed Lineage Summaries Groups records with shared lineage to reduce storage. Example:
Summarized metadata for aggregations in large-scale pipelines.

Delta-Based Storage Integrates lineage with version control. Example: Delta Lake ref-
erencing specific dataset snapshots for reproducibility.

Table 12 Techniques for Scaling Lineage Storage

Technique Description and Benefits
Sharding and Partitioning Splits lineage metadata by dataset, partition, or time to enable

horizontal scaling. Example: Partitioning by date for daily ETL
jobs.

Caching and Materialized Views Precomputes frequently accessed lineage queries to reduce re-
trieval latency. Example: Materialized dependency graph for crit-
ical datasets.

On-Demand Lineage Recon-
struction

Stores compressed metadata for deferred computation of fine-
grained lineage. Example: Reconstructing lineage from hash-
based summaries.

Metadata Compression Uses compact representations to minimize storage overhead. Ex-
ample: Hierarchical encoding for aggregated lineage data.

6 Visualization and Interaction with Lineage Data
The visualization and interaction with lineage data play a pivotal role in enabling

users to understand complex data dependencies, transformations, and their im-

pacts. By presenting lineage data in a user-friendly manner, organizations can en-

hance transparency, support troubleshooting, and facilitate governance. Visualizing
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coarse-grained and fine-grained lineage requires different techniques tailored to their

respective granularity, while integrations with business intelligence (BI) and gover-

nance systems ensure actionable insights. This section explores visualization tech-

niques for coarse-grained and fine-grained lineage and discusses their integration

into operational and decision-making workflows [14].

6.1 Coarse-Grained Lineage Visualization

Coarse-grained lineage visualization often involves rendering directed acyclic graphs

(DAGs) where datasets or tables are represented as nodes, and edges represent data

dependencies. These visualizations provide a clear, high-level understanding of data

flows within a system and are instrumental for tasks such as governance, impact

analysis, and pipeline auditing.

Hierarchical graph views are one of the most common methods for visualizing

coarse-grained lineage. These layered graphs position upstream datasets at the top

and downstream consumers at the bottom. The hierarchical structure allows users

to trace data dependencies by expanding or collapsing specific nodes to control the

level of detail. For example, a dataset node can be expanded to reveal associated

metadata, such as schema details or transformation types, aiding in impact analysis

and debugging.

Dependency matrices or heatmaps provide an alternative to graph-based repre-

sentations. In this approach, datasets are represented along the rows and columns of

a matrix, with cells indicating the presence or strength of a dependency. Heatmaps

can visually highlight frequently accessed datasets or critical data paths. For exam-

ple, heavily referenced datasets may appear as highly saturated cells, signaling their

importance in downstream workflows. This visualization is particularly effective for

organizations managing large numbers of datasets and requiring a condensed, tab-

ular representation of lineage [15].

Time-based lineage views add a temporal dimension to lineage visualization. These

views allow users to explore how lineage evolves over time, tracking changes to

dataset dependencies and transformations across pipeline runs. For instance, users

can ”rewind” lineage graphs to examine historical states, which is particularly useful

for auditing or debugging issues that occurred in previous versions of a pipeline.

This temporal context enables a more comprehensive understanding of how data

dependencies and processes have evolved over time.

6.2 Fine-Grained Lineage Visualization

Visualizing fine-grained lineage presents unique challenges due to the scale and

granularity of the data. Directly representing record- or cell-level dependencies in a

node-link diagram is often impractical, as the resulting graph would be too dense

and overwhelming. Instead, fine-grained lineage visualizations use techniques de-

signed to simplify and contextualize the data.

Interactive filtering and sampling allow users to focus on specific subsets of the

lineage graph. For example, a user investigating a particular anomaly can select

a single record or value in a target dataset and request its lineage. The system

dynamically generates a subgraph that traces the selected record’s dependencies
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across upstream datasets and transformations. This focused approach avoids over-

whelming users with excessive detail while providing the precise information needed

for debugging and analysis.

Aggregation and summarization are also commonly employed to manage the com-

plexity of fine-grained lineage. Rather than displaying every individual record, these

visualizations present aggregated statistics. For instance, a visualization might in-

dicate that ”90% of records in Dataset Z originate from Dataset Y, and 10% come

from Dataset X.” Users can drill down further if more detail is required, allowing

them to maintain high-level oversight while still having access to granular insights

when needed.

Multi-level drill-down combines the strengths of coarse- and fine-grained visual-

izations by enabling users to start with a high-level view and progressively explore

deeper levels of detail. For example, users might begin by viewing dataset-level de-

pendencies, then drill into specific transformations, and finally examine record-level

lineage within those transformations. This hierarchical navigation aligns with user

workflows and minimizes cognitive overload, ensuring a more intuitive exploration

experience.

6.3 Tooling and Integration with BI and Governance Systems

To maximize the utility of lineage data, it must be integrated into existing BI

tools and governance systems. Such integration ensures that lineage insights are

accessible to both technical and non-technical users and can be seamlessly applied

to decision-making and operational workflows.

Lineage overlays in BI dashboards are a practical example of integration. Busi-

ness analysts using a BI tool can hover over a specific metric to view its upstream

datasets, transformations, and filtering criteria. For instance, a dashboard visualiz-

ing sales metrics might display lineage information that identifies the source tables

and filters used in its computation. This transparency builds trust in data insights

and reduces the need for technical users to manually verify data origins.

Collaboration and annotation features enhance the usability of lineage tools by

enabling users to document insights, add context, and facilitate knowledge sharing.

For example, a data engineer investigating a dataset deprecation can annotate the

lineage graph with notes explaining the reasons for the deprecation and its potential

downstream impacts. These annotations enrich lineage data with human context,

improving knowledge transfer across teams and fostering a shared understanding of

data workflows.

Programmatic access through APIs is critical for automating lineage-related tasks

and integrating lineage data into broader systems. Lineage tools often expose meta-

data through REST APIs, GraphQL endpoints, or specialized query languages. For

example, a CI/CD pipeline might query the lineage system to determine whether a

schema change affects critical downstream datasets, triggering additional validation

steps if necessary. Similarly, governance workflows can use APIs to monitor lineage

for compliance purposes, such as ensuring that sensitive data does not propagate

into unauthorized datasets [2].
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6.4 Examples of Lineage Visualization and Integration Tools

Table 13 summarizes common visualization techniques for lineage data, while Ta-

ble 14 outlines strategies for integrating lineage tools with BI and governance sys-

tems.

Table 13 Lineage Visualization Techniques and Applications

Technique Description and Use Cases
Hierarchical Graph Views Layered graphs showing dataset dependencies. Useful for impact

analysis and governance workflows. Example: Expanding nodes
to reveal upstream transformations.

Dependency Matrices or
Heatmaps

Tabular representations of lineage with visual emphasis on critical
datasets. Effective for managing large numbers of datasets.

Time-Based Lineage Views Temporal graphs showing the evolution of data dependencies over
time. Useful for auditing and debugging historical pipeline runs.

Interactive Filtering and Sam-
pling

Subgraph generation for specific records or values. Useful for de-
bugging anomalies in downstream data.

Aggregation and Summarization Summarized views of lineage with drill-down options. Useful for
maintaining high-level oversight while supporting granular analy-
sis.

Table 14 Integration Strategies for Lineage Tools with BI and Governance Systems

Integration Approach Description and Benefits
Lineage Overlays in BI Dash-
boards

Embeds lineage information into BI tools, providing transparency
for non-technical users. Example: Hovering over a metric to view
its upstream datasets and transformations.

Collaboration and Annotation Allows users to document lineage graphs with notes and com-
ments. Useful for facilitating knowledge transfer and providing
context for decisions.

Programmatic Access via APIs Provides REST or GraphQL endpoints for integrating lineage data
with CI/CD pipelines or governance workflows. Useful for auto-
mated impact analysis and compliance monitoring.

7 Conclusions
This paper has examined the methodologies and challenges involved in capturing

and utilizing data lineage in modern data lakes, with a particular focus on both

coarse-grained and fine-grained approaches. We have reviewed key techniques for

lineage capture, including the instrumentation of ETL frameworks, the parsing of

declarative transformations such as SQL queries, and runtime data tracking. Each

method has distinct strengths and limitations in terms of granularity, computa-

tional overhead, and feasibility. Furthermore, we analyzed approaches for modeling

and storing lineage at varying levels of granularity, exploring solutions that balance

scalability, performance, and usability. Finally, we discussed state-of-the-art tech-

niques for visualizing and interacting with lineage data, as well as their integration

into business intelligence (BI) and governance tools to enhance accessibility and

utility.

Both coarse-grained and fine-grained lineage play complementary roles in data

management. Coarse-grained lineage offers a high-level overview of dataset depen-

dencies and transformations, making it indispensable for governance, impact analy-

sis, and regulatory compliance. In contrast, fine-grained lineage provides the detailed

traceability necessary for debugging, root cause analysis, and precise auditing. The

ability to navigate between these perspectives ensures that organizations can ad-

dress a diverse range of use cases effectively, from high-level oversight to granular

troubleshooting.



Bhaskaran Page 21 of 22

Capturing lineage data involves inherent trade-offs depending on the method em-

ployed. Logical plan analysis and instrumentation are efficient for coarse-grained

lineage but may lack the depth required for fine-grained traceability. Runtime track-

ing, while capable of capturing detailed lineage at the record or cell level, introduces

considerable computational and storage overhead, particularly in large-scale data

systems. The choice of an appropriate method often depends on the specific require-

ments of the organization, including its need for granularity, the scale of its data

lake, and operational constraints.

Modeling and storing fine-grained lineage present significant technical challenges

due to the sheer volume of metadata generated. Näıve approaches, such as storing

record-level provenance for every transformation, are typically infeasible for large-

scale systems. Techniques like lineage compression, grouping of similar records, and

delta-based storage can help mitigate these challenges. By optimizing storage and

retrieval methods, these approaches enable scalable lineage tracking while preserv-

ing the necessary level of detail.

Visualization is central to the usability of lineage data. Coarse-grained lineage

visualizations, such as directed acyclic graphs and dependency matrices, provide

intuitive representations of dataset-level dependencies. For fine-grained lineage, in-

teractive tools that allow users to filter, aggregate, and drill down into specific

details are essential for managing complexity. Integration with BI platforms and

governance systems further enhances the usability of lineage data by embedding

it into operational workflows, enabling users to access actionable insights directly

within familiar tools.

Standardized formats and APIs for lineage metadata would improve interoper-

ability across tools and platforms, reducing implementation complexity in hetero-

geneous environments. Furthermore, adaptive lineage systems that dynamically ad-

just granularity based on data sensitivity or compliance requirements could optimize

resource allocation while ensuring that critical datasets are appropriately tracked.

The integration of lineage systems with data contracts and semantic metadata

layers presents an opportunity to enhance governance frameworks. Combining lin-

eage with contractual guarantees about data quality and compliance could enable

automatic validation of transformations and early detection of discrepancies. As lin-

eage graphs grow increasingly complex, machine learning and automated reasoning

could play an instrumental role in deriving actionable insights, detecting anomalies,

and predicting downstream impacts of changes in data pipelines.

Data lineage is a cornerstone of modern data management, providing essential

transparency and traceability across the data lifecycle. As organizations continue

to scale their data operations, advancements in lineage capture, modeling, visual-

ization, and integration will be critical to addressing emerging challenges. By pur-

suing the research directions outlined here, the next generation of lineage systems

can achieve greater scalability, usability, and impact, empowering organizations to

manage their data ecosystems with confidence and precision.
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