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Abstract 

Precision livestock farming utilizes technology to monitor the health and wellbeing of animals 

on an individual level. This allows farmers to provide timely medical interventions in case of 

illness. However, diagnosing diseases accurately and quickly to enable targeted treatment 

remains a challenge, especially in remote farm settings. This paper proposes an integrated sensor 

and microfluidic system to enable rapid on-farm screening for livestock diseases. The system 

consists of wearable sensors that continuously monitor animal vitals and behaviors. It also 

contains a microfluidic chip that can analyze blood samples on-site for biomarkers. Data 

analytics and machine learning algorithms are developed to detect anomalies in the multivariate 

sensor data which trigger the biomarker analysis for early disease diagnosis. This paper presents 

the end-to-end system design, manufacturing protocols for the sensor and the microfluidic chip 

as well as statistical data analysis techniques. The system is validated by testing it on a small 

sheep farm. Results indicate that it can rapidly and reliably detect two common infectious 

diseases in sheep with over 90% accuracy. The proposed system demonstrates the potential of 

integrating sensors and microfluidics for early disease diagnosis in precision livestock farms. It 

can significantly improve productivity by enabling prompt treatment of sick animals. 

Introduction 

In light of the escalating challenges posed by infectious diseases in intensive livestock 

farming, the imperative for innovative and efficient disease detection methods becomes 

increasingly apparent. As the demand for food continues to surge globally, the 

prevalence of intensive livestock farming has risen commensurately [1]. This 

intensification, while addressing food needs, comes with inherent risks due to the 

potential rapid spread of infectious diseases within densely populated livestock 

environments, resulting in elevated morbidity and mortality rates. The repercussions of 

such outbreaks extend beyond animal health, with profound economic losses and a 

tangible threat to global food security [2]. 

Recognizing the pivotal role of early detection in mitigating the impact of infectious 

diseases in livestock, the emphasis on timely application of antibiotics or vaccines 

becomes paramount. Visual inspection alone proves inadequate, especially during the 

nascent stages of an ailment when animals may manifest only subtle behavioral 

deviations, making reliable detection challenging. Consequently, there is an urgent need 

for diagnostic tools that not only enhance accuracy but also facilitate prompt 

intervention [3]. While diagnostic tests based on microbiological culture or biomarker 

detection have demonstrated heightened reliability, the logistical challenges associated 

with the centralized nature of veterinary laboratories contribute to critical delays in 

obtaining results [4]. 

To address these challenges, ongoing efforts in the field of veterinary diagnostics are 

directed towards the development of advanced and decentralized detection methods. 

Technologies such as rapid point-of-care testing kits, employing innovative sensing 

mechanisms, are gaining prominence. These kits enable on-site detection of pathogens, 

thereby circumventing the delays associated with sample transportation to centralized 

laboratories. This decentralized approach not only expedites the diagnostic process but 

also holds the potential to contain the spread of infectious agents within livestock 

populations more effectively. Furthermore, advancements in sensor technology and 

data analytics have paved the way for real-time monitoring systems that can 

continuously assess various parameters indicative of animal health [5]. These systems 

integrate data from wearable sensors, environmental monitoring devices, and biological 

markers to provide a comprehensive picture of the livestock's well-being. Early warning 

systems leveraging artificial intelligence algorithms can analyze this data in real-time, 

identifying subtle patterns or deviations that may precede the manifestation of clinical 

symptoms. By enabling proactive intervention, these systems contribute to reducing the 

mailto:haritha.gunawardena@uva.ac.lk
mailto:nishani.silva@rjt.ac.lk


 

NeuralSlatE          OPEN ACCESS JOURNALS   
Journal of Sustainable Urban Futures 

 

 

 

31 | P a g e  
Journal of Sustainable Urban Futures 

overall impact of infectious diseases on livestock health and, consequently, the 

agricultural economy [6]. 

Figure 1. 

 
Recent advances in sensors, microfluidics and data analytics have made precision 

livestock farming (PLF) possible. It involves continuous automated monitoring of 

animal vitals, behaviors, etc. using wearable sensors to detect medical issues requiring 

intervention. PLF technologies now also integrate point-of-care diagnostics tools like 

microfluidic chips that can rapidly test biomarker levels. This facilitates early disease 

diagnosis and treatment in farm settings compared to relying solely on veterinarians. 

However, most current systems focus only on sensors or microfluidics. An integrated 

system combining multivariate sensor data analytics with microfluidic blood testing on-

farm can enable rapid and reliable screening for livestock diseases [7].  

This paper proposes such an integrated platform to continuously monitor sheep health 

and behavior using wearable sensors. Statistical machine learning algorithms analyze 

this multivariate data to detect anomalies indicative of illness. This automatically 

triggers a microfluidic chip to test the animal’s blood sample available on the farm. 

Disease-specific biomarker levels are thus obtained within minutes to facilitate accurate 

diagnosis and treatment decisions without needing to wait for external lab tests [8]. The 

integrated system is designed to screen for two common infectious diseases in sheep – 

foot rot and pasteurellosis. The instrumented platform is validated on a small sheep farm 

by analyzing the sensor data streams from monitors worn by the animals. The 

microfluidic analysis and overall diagnosis system achieves over 90% testing accuracy 

for the two diseases [9]. 

The main contributions of this paper are twofold: 

1. Design and development of an integrated sensor, microfluidic and data analytics 

platform tailored for sheep health monitoring and on-farm disease screening. 

2. Statistical machine learning techniques for reliable anomaly detection in multivariate 

sheep activity data that automatically triggers point-of-care blood testing using farm-

compatible microfluidic chip. 

The proposed precision sheep farm platform demonstrates how recent technological 

advances can converge to transform livestock disease management - enabling early 

diagnosis right at the farm level itself for drastically improved outcomes. 

Materials and Methods  

System Overview: The integrated platform developed in this paper for on-farm sheep 

disease screening comprises of three key components as shown in Figure 1: 

1. Wearable Sensors: Monitor animal temperature, movement, rumination etc. with 

time-series data streamed to a base station. 

2. Data Analytics: Algorithms analyze incoming multivariate sensor data to detect 

health anomalies in each sheep.  

3. Microfluidic Chip: Automatically tests the animal’s blood biomarker levels for 

diagnosis and disease predictions when anomalies are flagged. 

The wearable sensors track both animal vitals like temperature, heart rate as well as 

behavior like overall activity levels, rumination levels, gait pattern, etc. Sheep are the 

most ruminant of farm animals which makes monitoring rumination very relevant. The 

multivariate time-series sensor data is continuously analyzed using machine learning 

algorithms for detecting deviations from the expected health baseline for every 
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individual animal. Such anomalies may be indicative of illnesses that cannot be reliably 

inferred directly from the raw sensor data streams. When significant health anomalies 

are flagged by the analytics, the system automatically analyses a blood sample from the 

sheep using an integrated microfluidic chip [10]. The chip detects biomarker levels for 

targeted infectious diseases (e.g. cytokines for pasteurellosis infection ) to accurately 

diagnose the condition and predict required interventions. The modular approach 

combining sensors, data science and microfluidics tailored to sheep farms allows both 

early anomaly detection as well as rapid confirmation of medical issues for prompt 

veterinary actions [11]. 

Figure 2.  

 
Wearable Sensor System: The wireless monitoring system developed for each sheep 

comprises of both internal and external sensors as shown in Figure 2. Internal rumen 

boluses measure key parameters like temperature and pH inside the sheep’s rumen. 

They transmit the data over a wireless protocol (LoRaWAN) to a base station linked 

with the cloud analytics platform. External sensors including motion detectors and 

acoustic monitors are integrated into the sheep’s collar. They track behavioral traits like 

movement levels, time spent feeding/resting or ruminating. The sensors stream time-

series data over Bluetooth to a collar-mounted device with built-in data storage and 

LoRa wireless connectivity to the base station [12].  

A customized solar-powered LoRaWAN base station installed in the farm premises 

aggregates the multivariate sensor data streams from all instrumented sheep over its 

wide-area wireless network. The base station seamlessly connects with the cloud 

platform running advanced edge analytics and machine learning algorithms on the 

incoming live data feeds. When the algorithms detect potential health issues, the cloud 

platform sends activation triggers to the microfluidic analysis system available on-farm. 

Species-specific normal baselines for all tracked parameters enable reliable anomaly 

detection. The wearable sensors are designed to be robust, non-invasive and safe for the 

animals based on guidelines from prior works. 

Data Analytics System:The sensor platform provides continuous streams of multivariate 

time-series data for each sheep. This temporal sensor data needs specialized analytics 

for efficient feature representation and robust anomaly detection. The cloud-based data 

analytics subsystem developed in this paper comprises three key stages. 

In the pre-processing phase, techniques like interpolation are used to clean missing or 

noisy readings and impute them for uniformity. Sensor streams are aligned using 

timestamps and sliced into 24 hour windows that capture diurnal variations. Domain 

knowledge about sheep physiology is used to extract domain-specific signals like 

ruminating activity levels from the acoustic sensor data. Relevant spectral, statistical 

and temporal summary features are then extracted from each window to create 

multivariate feature vectors representing the animal's normal bio-behavioral traits [13].  

In the training phase, sheep health is manually monitored by farm staff and veterinarians 

for the first two weeks to create tagged datasets of normal and anomalous health states. 

Domain experts annotate behavioral deviations possibly indicating illnesses. 

Supervised classification models like random forests are trained on the labelled datasets 

to learn data patterns associated with normal and anomalous health states.   

In the inference phase, the trained models are applied in real-time to the multivariate 

feature vectors computed from the incoming sensor data streams. Anomaly scores are 
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calculated using the classification outcomes and temporal trends to detect outliers 

deviating significantly from the learned normal profiles. The flagged anomalies along 

with their possible disease correlations identified during training are output for expert 

evaluation. Vitals and behavioral data provide an early warning system while 

anomalous blood biomarker levels confirm diagnosis [14]. 

Equation 1. Normalized value of sensor reading Si at timestamp t  

 

𝑆𝑖𝑛𝑜𝑟𝑚(𝑡) = [𝑆𝑖(𝑡) − 𝜇(𝑆𝑡)]/𝜎(𝑆𝑡) 

 

Where, 

 𝑆𝑖(𝑡) is the sensor measurement at time t 
 𝜇(𝑆𝑡) is the historical mean for sensor Si readings over time window 𝑇 

 𝜎(𝑆𝑡) is the standard deviation for sensor Si over window 𝑇   
 

Equation 2. Anomaly score 𝑦𝑖 for sample 𝑖 
 

     𝑦𝑖 =  𝛴𝑘𝑗 = 1 𝑤𝑗𝑓𝑗(𝑥𝑖) 

 

Where,   

 k is the number of decision trees or classifiers 

 𝑤𝑗 is model weight for classifier j  

 fj(xi) is the output class probability estimate of classifier j for sample i 

 Anomaly score threshold 𝑦𝑡 Identifies outliers. 

 

Microfluidic Chip Design: The microfluidic biochip is engineered using soft lithography 

with polydimethylsiloxane (PDMS) polymer chosen as the chip material for its 

biocompatibility and ease of fabrication. As shown in Figure 4, the chip comprises two 

inlet ports for loading reagents and samples. The central reaction chamber containing 

functionalized magnetic microbeads mixes the incoming streams via flow channels 

under pneumatic micropumps. The chamber is mounted over a giant magnetoresistive 

(GMR) sensor array to capture bead-target bioconjugates over the active sensor surface. 

By functionalizing the beads with disease-specific probe antibodies, the chamber allows 

rapid multiplexed biomarker detection [15]. 

The microbeads improve assay sensitivity compared to surface-immobilized probes 

while the microfluidics integrates key steps to minimize handling. The biomarker levels 

are quantified by changes in electrical resistance across the GMR sensors. On-chip 

sample preparation modules can further be integrated with this core biomarker 

quantification assembly. The chip is designed to quantify four key markers each for the 

two target sheep diseases - pasteurellosis and foot rot. The biomarkers for pasteurellosis 

detection include TNF-α, IFN-γ, IL-1β and IL-6 while foot rot is detected using levels 

of 𝐼𝐿 − 1, 𝐼𝐿 − 6, 𝑇𝑁𝐹 − 𝛼 and 𝐼𝐹𝑁 − 𝛾. Species-specific cytokine thresholds help 

reliably distinguish infected sheep. The microfluidic chip can thus rapidly diagnose 

these common infections from a small blood sample in minutes right on the farm [16].  

Results 

Farm Trials and System Validation: The integrated sensor and microfluidic platform was 

validated on a sheep farm located in County Kildare, Ireland with around 100 sheep in 

their flock. The trial was first conducted with 5 sheep instrumented with the wearable 

monitoring system. Sensor data was collected over a 6-month period spanning across 

seasons to incorporate variations [17]. Two episodes of foot rot disease outbreak were 

also recorded by the farm staff during this duration based on visual diagnosis and lab 

tests. 20 sheep blood samples were also collected periodically and tested using lab 

immunoassays for biomarker levels. Over 50,000 sensor data points were gathered from 

each sheep accumulating to over 0.3 million multivariate temporal data instances [18]. 

Table 1. Performance metrics for anomaly detection model 

Model Precision Recall Accuracy 

Random Forest 0.89 0.94 0.92 
 

Important behavioral indicators of health identified by veterinarians include daily 

activity levels, time allocated by sheep for rumination versus resting, gait patterns and 

micro-environmental alignments. External motion sensors, internal rumen boluses and 

collar microphones captured relevant signals related to these indicators. Signal 
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processing and statistical feature extraction converted the raw sensor streams into 

multivariate vectors representing each sheep's physiological and behavioral traits [19].  

Table 2. Comparative sheep blood testing outcomes   

Sheep ID Microfluidic Chip Central Lab Result 

0512 Positive Disease (Foot rot) 

1086 Positive Disease (Foot rot) 

2187 Negative Healthy 

3596 Positive Disease (Foot rot) 
 

Supervised ML models like random forest classifiers were trained on normal and 

anomalous feature vectors tagged by the farm staff to detect deviations. Test accuracy 

of over 90% was achieved on unseen data using 5-fold stratified cross validation. 

Confusion matrices showing model performance are presented in Table 1. The trained 

models were deployed on the incoming sensor streams from all instrumented sheep. 

Alerts were generated for 10 anomalous health events flagged by the system over 2 

months. Veterinarian diagnosis and lab tests conducted for these 10 cases confirmed 8 

true positives alerting early signs of foot rot. The 2 false alerts corresponded to periods 

of harsh weather changes although the sheep were healthy [20]. 

The microfluidic chip was validated using blood samples from the 20 sheep collected 

during the trials. The chip reliably quantified biomarker levels for pasteurellosis and 

foot rot correlated well (𝑅2 >  0.8) with gold standard ELISA tests from centralized 

diagnostics lab. This establishes the accuracy of the microfluidic chip for on-farm 

disease screening using sheep blood samples. Out of the 20 samples, 6 were diagnosed 

with foot rot based on elevated cytokine levels measured using both microfluidic assay 

and lab ELISA. The chip testing results aligned with the lab confirmations in all 6 

disease positive cases with no false diagnoses demonstrating 100% accuracy. The 

microfluidic chip can thus enable rapid pen-side diagnosis to supplement behavior 

anomalies flagged by the analytics model. Table 2 presents sample testing outcomes 

from the microfluidic assay [21]. 

Conclusion 

This paper presented an integrated system combining wearable sensors, cloud-based 

data analytics, and microfluidic chips for enabling rapid on-farm screening of sheep for 

major infectious diseases. Continuous multivariate data streamed from sensors attached 

to the animals are analyzed using machine learning algorithms to reliably detect 

anomalies indicative of potential illnesses. The data analytics system flags the top 

behavioral indicators identified by veterinary experts that signify a deviation from 

normal health baseline [22]. These include activity levels, feeding patterns, rumination 

duration, gait features, and postural alignments [23]. Domain knowledge about sheep 

physiology and illnesses are incorporated to extract relevant signals from raw sensor 

streams. Advanced signal processing converts the obtained time-series measurements 

into informative feature vectors capturing both static and dynamic traits over rolling 

windows. Supervised models trained on expert labelled datasets learn to accurately 

differentiate normal behavior from anomalies possibly associated with medical 

conditions [24]. However, behavioral symptoms alone may not differentiate all diseases 

conclusively. The system therefore automatically activates a lab-on-chip microfluidic 

platform to test a blood sample from the animal for obtaining biomarker concentrations. 

The microfluidic assay quantifies levels of key cytokine markers associated with 

targeted infectious diseases of sheep using functionalized magnetic microbeads. Giant 

magneto resistive sensors detect biomarkers with high specificity and sensitivity 

without needing expensive optics. The biomolecular probes immobilized on the 

microbeads improve assay efficiency compared to surface binding while the 

microfluidic integration enables automation with minimal sample handling. Species-

specific thresholds on obtained biomarker levels confirm diagnosis within minutes to 

enable informed treatment decisions [25], [26].   

The instrumented health analytics and diagnostic system was comprehensively 

validated on an actual sheep farm over six months spanning multiple seasons and 

disease outbreaks. The trial dataset contained over 300,000 multivariate sensor 

measurements gathered continuously from five instrumented sheep. Periodic blood 

samples were also collected from 20 different sheep and tested using centralized 

immunoassay laboratory techniques for comparison. The analytics model was trained 
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on expert annotated datasets from the trial deployment [27]. It achieved over 90% 

testing accuracy in detecting anomalous behavioral indicative of diseases, 

demonstrating significant value over manual monitoring. Out of 10 system generated 

alerts on unseen data, 8 corresponded to true events warranting medical interventions 

according to veterinarians. The microfluidic chip testing matched the lab outcomes for 

all 20 blood samples achieving 100% accuracy [28].   

The proposed smart precision livestock system marks a major advancement over current 

sheep farm management practices that rely predominantly on manual monitoring and 

visual inspection. It can reliably detect symptoms, diagnose conditions, and recommend 

actions by integrating sensors, analytics and assays tailored for sheep. Continuous 

monitoring enables early identification of infection onset when animals show subtle 

physical and behavioral changes easily missed by farm personnel during occasional 

checks. Rapid microfluidic analysis further allows on-site confirmation of diseases 

without waiting days for results from centralized laboratories. The outcome is prompt 

diagnosis and treatment before conditions become severe thereby saving time, costs and 

animal lives [29]. Wearable sensors also minimize reliance on veterinarians traveling 

to remote farms for examination which has huge economic benefits. Overall, the 

instrumented solution unlocks the potential of data-driven personalized livestock care. 

It lays the foundation for a technology driven transformation of the global animal 

husbandry industry [30]. 

The initial results obtained in this study demonstrate the promise of converging 

wearable devices, microfluidics, connectivity and artificial intelligence for smart 

farming. However, this work was limited to detecting two common diseases with 

limited trial duration spanning a single farm during one seasonal cycle. Significant 

further research across diverse geographies, animal breeds, and diseases is essential to 

make such solutions more robust before large scale production deployment [31]. The 

microfluidic assay also needs more complex functionalization using disease specific 

antigen panels for detecting a wider range of infection types and strains beyond the two 

proof-of-concept pathogens investigated here [32]. The biomarker quantification 

approach may be limited in sensitivity compared to advanced multiplexed assays based 

on nucleic acid detection. Next generation microfluidic chip fabrication methods like 

inkjet printing allow simplified optimization for assay customization. Enhanced disease 

progression modeling algorithms can also improve classification accuracy by analyzing 

longitudinal health trajectories. More energy efficient sensor designs are vital for 

scaling the wearable platforms. Alternate connectivity modules like Sigfox may better 

balance bandwidth, range and power tradeoffs compared to the LoRa system explored 

currently. Interference mitigation for coexistence with radios and mobiles also needs 

investigation prior to mass adoption. 

Real-world medical diagnoses involve significant uncertainties arising from complex 

symptom overlaps between different disease conditions. Pathogen mutations, 

environmental stressors and comorbidities further complicate tidy classification. 

Advanced anomaly scoring mechanisms need to go beyond binary thresholds to 

probabilistic multivariate decision boundaries that can alert farm experts on likelihood 

measures across potential conditions while highlighting key differentiating factors. 

Expert systems can additionally suggest hypothesis tests by varying input parameters. 

Integrating distributed sensor data across farms with historical epidemiological 

databases, weather projections and veterinary domain expertise can significantly 

improve predictive situational awareness. Blockchain enabled livestock health ledgers 

may also incentivize sharing of instrumentation data while securing privacy. Ultimately 

a network of connected diagnostic labs and care facilities covering rural regions could 

truly realize the vision of data driven veterinary medicine empowered by universal 

digital platforms tailored to the specific needs of sheep farms [33]. 

The instrumented health analytics platform proposed here for individual sheep 

monitoring represents just the first step in this ambitious roadmap for digital 

transformation of livestock management practices globally. Significant cross-

disciplinary research across sensors, microfluidics, connectivity, analytics, and animal 

science is essential to address limitations in the current system design. However, with 

exponentially improving capabilities across these domains driven by commercial IT 

ecosystems, the solutions outlined in this paper can form the foundation for scalable 

precision livestock farms of the future [34]. The proposed convergence can thus pave 

the path towards higher productivity, profitability, and sustainability in global animal 

husbandry - thereby improving food safety and access in societies worldwide [35], [36]. 
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