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Abstract 

Detecting Personal Protective Equipment (PPE) has become essential for assuring worker safety 

and regulatory compliance in numerous industries. This study presents a deep learning approach 

for PPE detection using the YOLOv4 architecture. The primary objective is to develop a robust 

model capable of identifying ten PPE classes. The dataset used for training and evaluation 

consists of 2,605 images for training, 114 images for validation, and 82 images for testing, with 

checks performed to prevent data leakage. The proposed model architecture is based on 

YOLOv4 and comprises 225 layers. It incorporates convolutional layers, spatial pyramid 

pooling, skip connections, and data augmentation techniques to enhance detection performance. 

The model is trained for 100 epochs using Stochastic Gradient Descent (SGD) optimization with 

a learning rate of 0.01. Evaluation metrics, including precision, recall, and mean Average 

Precision (mAP), are employed to assess the model's effectiveness. Experimental results 

demonstrate the model's proficiency in detecting certain PPE classes, such as Mask and 

machinery, with high precision and recall scores. However, challenges are encountered in 

accurately detecting the absence of safety items and localizing vehicles. Precision-recall curves 

reveal trade-offs between precision and recall for safety-related objects, while precision-

confidence and F1-confidence curves indicate performance improvements at higher confidence 

thresholds. A comprehensive analysis of class-wise performance metrics reveal that the vehicle 

and Person classes exhibit higher box, object, and classification losses, indicating difficulties in 

accurate localization and classification. Conversely, the Mask class achieves the highest 

precision, and the machinery and Mask classes demonstrate strong recall performance. This 

study contributes to the advancement of PPE detection by presenting a deep learning approach 

using YOLOv4 and conducting a thorough performance analysis across various PPE classes. 

The findings highlight the importance of detailed performance evaluation to identify class-

specific challenges and guide future research efforts in enhancing PPE detection accuracy and 

robustness. The proposed approach can be integrated into real-world safety monitoring systems, 

promoting worker safety and compliance in industrial settings. 

Indexing terms: Personal Protective Equipment (PPE) detection, deep learning, 

YOLOv4, object detection, worker safety, performance analysis, industrial safety 

compliance 

Introduction 

Workplace injuries continue to be a significant concern in modern society, with a lack 

of properly worn safety equipment often cited as a primary contributing factor [1], [2]. 

This issue is particularly prevalent in the construction industry, where job sites are 

inherently hazardous environments, and workers are at an elevated risk of sustaining 

injuries or experiencing falls [3], [4]. Despite the well-documented dangers associated 

with construction work, many employees still fail to consistently and correctly utilize 

the personal protective equipment (PPE) provided to them, thus increasing their 

vulnerability to accidents and health risks. 

Table 1. Occupational injuries and illnesses per 100 full-time equivalent workers for selected industry groups in the 

private industry in the year 2011. Source: Source:   U.S. Bureau of Labor Statistics. 

Industry Group Injury rate Rate per 100 Full-Time Equivalent Workers 

Private Industry 3.5 

Construction 3.9 

Manufacturing 4.4 

Financial Activities 1.4 

Health Care and Social Assistance 5.0 

 

In recent years, there has been a growing recognition of the need to prioritize worker 

safety within the construction sector. This renewed focus on safety not only benefits 

individual employees but also has a significant positive impact on the reputation of 

https://www.bls.gov/opub/mlr/2013/article/using-workplace-safety-data-for-prevention.htm


NeuralSlatE          OPEN ACCESS JOURNALS   
Journal of Sustainable Urban Futures 
2022

 
 

2 | P a g e  

construction companies. Firms can demonstrate their commitment to the well-being of 

their workforce through actively promoting and enforcing the use of PPE [5], [6], which 

can help to attract and retain talented professionals, as well as foster positive 

relationships with clients and the broader community. The consistent use of safety 

equipment, such as harnesses and helmets, has been shown to substantially reduce the 

incidence of falls, which are among the most common and devastating types of 

accidents on construction sites.  

Although there are clear benefits of wearing PPE and the increasing availability of 

monitoring systems, some workers may still fail to comply with safety regulations. This 

non-compliance can be temporary, with workers removing their PPE for brief periods 

due to discomfort, inconvenience, or a perceived lack of immediate risk. In other cases, 

workers may reject the use of safety equipment altogether, often due to a lack of 

awareness about the importance of PPE or a belief that it is unnecessary [7], [8]. 

Regardless of the underlying reasons, the failure to wear PPE consistently can have 

severe consequences, ranging from minor injuries to life-altering disabilities or even 

fatalities [9], [10]. 

Several factors have been identified as contributing to PPE non-compliance in the 

construction industry. One of the most significant issues is inadequate safety 

supervision, which can occur when managers and supervisors fail to prioritize safety or 

do not actively enforce PPE requirements. This lack of oversight can create a culture in 

which workers feel that PPE use is optional or unimportant, leading to widespread non-

compliance. Another critical factor is poor risk perception among workers, who may 

underestimate the hazards associated with their tasks or overestimate their ability to 

avoid accidents. This misperception of risk can be particularly problematic when 

combined with a lack of safety training, as workers may not fully understand the proper 

use and limitations of their PPE [11], [12]. 

In addition to these factors, the lack of climate adaptation can also contribute to PPE 

non-compliance. Construction workers are often required to perform their duties in a 

wide range of weather conditions, including extreme heat, cold, and humidity. When 

PPE is not designed or selected with these environmental factors in mind, workers may 

find it uncomfortable or impractical to wear, leading to increased instances of non-

compliance. For example, workers may remove their helmets or eye protection in hot, 

sunny conditions to cool off, or they may forego gloves in cold weather to maintain 

dexterity . A lack of management support can also play a significant role in PPE non-

compliance. When company leaders and supervisors do not prioritize safety or fail to 

allocate sufficient resources to safety training and equipment, workers may perceive 

PPE use as a low priority. This lack of support can also manifest in the form of 

inadequate communication about safety policies and procedures, as well as a failure to 

involve workers in the selection and implementation of PPE [13], [14]. 

To address the challenge of ensuring that workers consistently wear their PPE, many 

construction companies and safety organizations have invested in the development of 

monitoring systems. These systems employ various technologies, such as cameras, 

sensors, and wearable devices, to track the use of safety equipment during working 

hours. These monitoring solutions enable supervisors and managers to quickly identify 

instances of non-compliance and intervene, by providing real-time data on PPE 

compliance to correct the situation before an accident occurs. The data collected by 

these systems can be analyzed to identify patterns and trends in PPE usage, allowing 

companies to target their safety training and awareness efforts more effectively. 

Artificial Intelligence (AI) has been applied to develop automated, advanced, and cost-

effective monitoring systems that can recognize Personal Protective Equipment (PPE) 

and workers to determine if the worker is complying with safety regulations. These 

systems help ensure employee safety by detecting and classifying objects using 

Computer Vision and Deep Learning (DL) technologies. DL is designed to mimic the 

human brain and has the ability to improve and learn by itself. 
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Computer Vision's effectiveness is derived from Convolutional Neural Networks 

(CNNs), which automatically perform feature extraction for targeted objects. The 

extracted features are then fed into the DL model to support decision-making 

capabilities. Transfer learning can also be used to increase the reliability of the solution 

by applying knowledge from previously trained models on related problems. 

There are two main categories of detectors: one-stage detectors and two-stage detectors. 

One-stage detectors, such as the YOLO (You Only Look Once) family, perform both 

localization and recognition of desired objects in the same phase, enabling near real-

time detection [15]. Two-stage detectors, like the Regional-based Convolutional Neural 

Network (RCNN) family, execute the object detection procedure in two phases to 

achieve accurate and reliable results. In the first phase, object localization is performed 

to propose regions with a high probability of containing objects. The second phase then 

identifies objects from the characteristics extracted from the localized regions. Both 

types of detectors aim to detect targeted objects, but there is a notable trade-off between 

real-time detection and accuracy. One-stage detectors prioritize speed, while two-stage 

detectors focus on precision.   

Implementing AI-based monitoring systems for PPE compliance can significantly 

improve workplace safety by automating the process of identifying workers who are 

not wearing the required protective equipment. This technology can be applied in 

various industries, such as construction, manufacturing, and healthcare, where 

adherence to safety regulations is crucial for preventing accidents and injuries. 

Methods 

Dataset and PPE Classes 

The study focuses on detecting Personal Protective Equipment (PPE) using the 

YOLOv4 architecture. The dataset comprises ten PPE classes as shown Figure 2. The 

dataset is split into three subsets: training, validation, and testing. The training set 

consists of 2,605 images, while the validation set contains 114 images, and the testing 

set includes 82 images. 

Figure 1. distribution of the training, validation, and test data 

 

Data Integrity Check 

To ensure the reliability of the training process, there is a need to verify that no 

filenames are present in more than one subset of the dataset. This issue is known as data 

leakage and can lead to unreliable training results. In this study, a thorough check is 

performed to confirm that each filename is unique across the training, validation, and 

testing sets. 

Data Annotation Quality 

When dealing with large datasets, especially those obtained from different 

competitions, it is common to have manual annotators involved in the labeling process. 

To ensure the quality and consistency of the annotations, three key aspects are 

investigated before proceeding with Exploratory Data Analysis (EDA) or data pre-

processing. These aspects include verifying the accuracy of the annotations, checking 
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for consistency in labeling across different annotators, and ensuring that the annotations 

adhere to the defined PPE classes and their corresponding definitions. 

Figure 2. 10 classes 

 

 

Table 2. Class distribution   
Train Valid Test 

0 3145 79 110 

1 1651 21 28 

2 2317 69 41 

3 3097 74 79 

4 3962 106 90 

5 9532 166 174 

6 3366 44 92 

7 3033 41 61 

8 5247 55 44 

9 1545 42 41 

 

The training set consists of a total of 36,895 instances across all PPE classes, with Class 

5 having the highest representation of 9,532 instances and Class 9 having the lowest 

representation of 1,545 instances. The validation set contains a total of 697 instances, 

with Class 5 having the highest representation of 166 instances and Class 1 having the 

lowest representation of 21 instances. The testing set comprises a total of 760 instances, 

with Class 5 having the highest representation of 174 instances and Class 1 having the 

lowest representation of 28 instances. 

The distribution of instances across the different PPE classes varies within each subset. 

In the training set, Class 5 has the highest number of instances, followed by Class 8, 

Class 4, Class 6, Class 0, Class 3, Class 7, Class 2, Class 1, and Class 9. The validation 

set follows a similar pattern, with Class 5 having the highest representation and Class 1 

having the lowest. In the testing set, Class 5 remains the most represented class, while 

Class 1 has the lowest number of instances. 

YOLOv4 

The YOLOv4 architecture is a state-of-the-art object detection system that combines 

the best practices and techniques from various object detection models to achieve 

optimal speed and accuracy. It is designed to be a one-stage detector, which means that 

it does not rely on a preliminary stage to identify regions of interest before classifying 

objects within those regions [16]. Instead, YOLOv4 directly predicts the presence and 

location of objects in a single pass through the network, making it faster and more 

efficient than two-stage detectors. 

The architecture of YOLOv4 consists of several key components. The first stage is the 

"Input" stage, where the dataset is introduced to the network. The input data can be of 

any size, but it is often resized to a consistent resolution to facilitate efficient processing. 

Once the input data is prepared, it is passed to the "Backbone" stage [17]. 

The backbone of YOLOv4 is a convolutional neural network (CNN) that is responsible 

for extracting features from the input images. CNNs are well-suited for image 

processing tasks. They consist of multiple layers of interconnected nodes for 

performing a specific operation on the input data. The layers in a CNN typically include 

convolutional layers, which apply a set of learnable filters to the input image to detect 

specific features, and pooling layers, which downsample the feature maps to reduce 

computational complexity and increase robustness to small variations in the input. 
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There are several popular CNN architectures that can be used as the backbone for 

YOLOv4, including VGG16, ResNet-50, SpineNet, EfficientNet-B0/B7, 

CSPResNeXt50, and CSPDarknet53. Among these options, CSPDarknet53 has been 

shown to provide the best results in terms of both speed and accuracy, according to the 

paper "Yolov4: Optimal speed and accuracy of object detection." As a result, 

CSPDarknet53 is the default backbone used in the YOLOv4 architecture [18]. 

After the backbone, the feature maps are passed through the "Neck" stage, which 

consists of additional layers that enhance the discriminability and robustness of the 

features. The neck stage employs various techniques, such as Feature Pyramid Network 

(FPN), Path Aggregation Network (PAN), Spatial Pyramid Pooling (SPP), BiFPN, and 

NAS-FPN. In YOLOv4, the two primary components used in the neck stage are SPP 

and PAN. 

Spatial Pyramid Pooling (SPP) allows the network to extract the most important 

contextual features from the input image without affecting the overall speed of the 

network. It works by dividing the feature maps into multiple spatial bins of different 

sizes and then pooling the features within each bin. This approach helps to capture 

multi-scale information and improves the network's ability to detect objects of different 

sizes. 

Path Aggregation Network (PAN) is used in the neck stage of YOLOv4. PAN provides 

a way to aggregate feature maps from different levels of the backbone network and 

combine them for use in the detector stage. PAN helps to improve the network's ability 

to detect objects at different scales and increases the overall robustness of the object 

detection system [19]. 

The final stage in the YOLOv4 architecture is the "Head" stage, which is responsible 

for predicting the classes and bounding boxes of the detected objects. In the one-stage 

detector model used by YOLOv4, the head stage is related to dense prediction, which 

means that it directly predicts the presence and location of objects without relying on a 

preliminary region proposal stage. This is in contrast to two-stage detector models, 

which use a sparse prediction stage (such as Faster R-CNN, R-FCN, or RepPoint) to 

generate region proposals before classifying the objects within those regions [20]. 

The head of YOLOv4 is based on the YOLOv3 architecture, which has been proven to 

be effective for dense object detection. YOLOv3 uses a series of convolutional layers 

to predict the class probabilities and bounding box coordinates for each cell in the output 

feature map. It also employs anchor boxes, which are predefined bounding boxes of 

different sizes and aspect ratios, to improve the network's ability to detect objects of 

various shapes and sizes. 

YOLOv4 architecture can achieve real-time object detection while maintaining high 

accuracy. This is made possible by the careful selection and combination of techniques 

used in each stage of the network. For example, the use of CSPDarknet53 as the 

backbone provides a good balance between speed and accuracy, while the incorporation 

of SPP and PAN in the neck stage helps to enhance the discriminability and robustness 

of the features. 

Multi-scale object detection for YOLOv4 is achieved through the use of feature 

pyramids, which allow the network to detect objects at different scales by processing 

the input image at multiple resolutions. The feature maps from different levels of the 

backbone are combined and upsampled in the neck stage. This provides the head stage 

with a rich set of features that can be used to detect objects of various sizes. 

In addition to its architectural innovations, YOLOv4 also incorporates several training 

techniques that help to improve its performance. These include data augmentation, 

which involves applying random transformations to the input images during training to 

increase the diversity of the training data, and multi-scale training, which involves 

training the network on images of different resolutions to improve its capacity to handle 

objects at different scales. 
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Model configuration and training setup  

Model Architecture: 

The proposed model for PPE detection is based on the YOLOv4 architecture and 

consists of a total of 225 layers. The architecture incorporates various components, 

including convolutional layers, spatial pyramid pooling, concatenation layers, and 

detection layers. These layers are  to extract meaningful features from the input images 

and perform object detection. To facilitate the flow of information and improve the 

model's performance, skip connections are employed for allowing the model to leverage 

features from different scales and depths. 

Optimizer and Training Parameters: 

The model is trained using the Stochastic Gradient Descent (SGD) optimization 

algorithm with a learning rate of 0.01. The learning rate determines the step size at 

which the model's parameters are updated during the training process. The parameters 

of the model are grouped into three categories: weights without decay, weights with 

decay, and biases. This grouping is for different regularization strategies to be applied 

to different sets of parameters for aiding in preventing overfitting and improving 

generalization. 

Data Augmentation Techniques: 

Various data augmentation techniques are employed during training to enhance the 

model's robustness and generalization ability,. These techniques include blur, median 

blur, grayscale conversion, and Contrast Limited Adaptive Histogram Equalization 

(CLAHE). After applying these augmentations to the training images, the model is 

exposed to a wider range of variations and becomes more resilient to different lighting 

conditions, noise, and image transformations encountered in real-world scenarios. 

Data Preparation and Loading: 

The training and validation datasets are sourced from specific directories, ensuring a 

clear separation between the two sets. During the data preparation phase, duplicate 

labels are identified and removed from the training data to avoid any inconsistencies or 

redundancies. To efficiently load the data during training, two workers are utilized, for 

parallel processing and faster data retrieval. The model undergoes a training process 

that spans a total of 100 epochs.  

Model Initialization: 

Prior to training, the model's weights are initialized using pretrained weights. These 

pretrained weights is for allowing the model to leverage the knowledge learned from 

previous tasks or datasets. The initialization process is successful for most of the 

model's components for further fine-tuning and adaptation to the specific PPE detection 

task. 

Logging and Visualization: 

Throughout the training process, important information and results are logged for 

monitoring and analysis purposes. This includes the labels associated with the detected 

objects, as well as the progress of the training process. To facilitate visual inspection 

and interpretation, the detected labels are plotted and saved for reference. The proposed 

YOLOv4-based approach aims to achieve robust and accurate PPE detection.  

Results 
Following results are achieved.  

➢ Decreasing Loss: The loss values for bounding box regression, class 

prediction, and possibly other losses are decreasing over epochs. This suggests 

that the model is learning and improving its performance. 

➢ Consistent GPU Memory Usage: The GPU memory usage seems consistent 

throughout the training process, indicating that the model architecture and batch 

size might remain stable. 

➢ Increasing Number of Instances: The number of instances detected in each 

epoch seems to fluctuate but generally increases towards the end of training. 

This could mean that the model is becoming more capable of detecting objects 

in the dataset. 

➢ Evaluation Metrics: The evaluation metrics (Box Precision, Recall, mAP50, 

etc.) for all classes are improving or remaining stable over epochs, indicating 



NeuralSlatE          OPEN ACCESS JOURNALS   
Journal of Sustainable Urban Futures 
2022

 
 

7 | P a g e  

overall improvement in the model's performance in terms of object detection 

accuracy. 

 

Table 3. Evaluation Metrics by Class 

Class Images Instances Box(P) R mAP50 mAP 

all 114 697 0.919 0.729 0.81 0.507 

Hardhat 114 79 0.921 0.735 0.856 0.56 

Mask 114 21 0.966 0.905 0.918 0.665 

NO-Hardhat 114 69 0.939 0.565 0.731 0.412 

NO-Mask 114 74 0.894 0.595 0.669 0.343 

NO-Safety Vest 114 106 0.913 0.651 0.778 0.45 

Person 114 166 0.905 0.744 0.832 0.515 

Safety Cone 114 44 0.892 0.864 0.872 0.52 

Safety Vest 114 41 0.923 0.78 0.907 0.604 

Machinery 114 55 0.954 0.927 0.936 0.65 

Vehicle 114 42 0.88 0.522 0.601 0.347 

 

Figure 3. precision-recall curve 

 

The precision-recall curves reveal the performance characteristics of the object 

detection model for different classes. The "Mask" class stands out with a high and 

relatively stable precision across a wide range of recall values, indicating excellent 

performance in detecting masks. Similarly, the "machinery" class maintains high 

precision for most recall levels, suggesting reliable detection of machinery objects. 

On the other hand, the "NO-Mask" and "vehicle" classes exhibit lower precision values, 

especially at higher recall levels. This implies that the model struggles more with 

accurately detecting the absence of masks and identifying vehicles compared to other 

classes. 

The "Hardhat", "Safety Vest", and "Safety Cone" classes show similar precision-recall 

curves, with precision gradually decreasing as recall increases. This indicates a trade-

off between precision and recall for these safety-related objects, where the model's 

ability to detect all relevant instances comes at the cost of some false positive 

predictions. 

The "Person" class has a precision-recall curve that lies in the middle of the pack, 

suggesting moderate performance in detecting people compared to other classes. 

Notably, the "NO-Hardhat" and "NO-Safety Vest" classes have lower overall precision 

compared to their counterparts ("Hardhat" and "Safety Vest"), indicating that the model 

may have more difficulty accurately identifying the absence of these safety items. 

The dashed black line represents the overall performance across all classes, providing 

an aggregate view of the model's precision-recall characteristics. It shows a balance 
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between precision and recall, with the curve maintaining relatively high precision 

values up to a recall level of around 0.6 before starting to decline more rapidly. 

In summary, the precision-recall curves highlight the model's strong performance in 

detecting classes like "Mask" and "machinery", while also revealing challenges in 

accurately detecting the absence of certain safety items and identifying vehicles. The 

curves provide valuable insights into the model's behavior and trade-offs between 

precision and recall for each class. 

Figure 4.  precision-confidence curves 

 

The precision-confidence curves shows that as the confidence scores increase, the 

precision values for most classes tend to improve, suggesting that the model's 

predictions become more accurate when it has higher confidence in its detections. 

However, there are notable differences in the precision-confidence curves among the 

classes. The "Mask" and "machinery" classes maintain high precision values across a 

wide range of confidence scores, indicating strong and consistent performance in 

detecting these objects. On the other hand, classes like "NO-Mask", "NO-Safety Vest", 

and "vehicle" show lower precision values, especially at lower confidence scores, 

suggesting room for improvement in detecting these objects accurately. 

The "Hardhat", "Safety Vest", and "Safety Cone" classes exhibit similar precision-

confidence curves, with precision values increasing steadily as confidence scores rise. 

This indicates that the model performs relatively well in detecting these safety-related 

objects. 

The "Person" class has a precision-confidence curve that falls somewhere in the middle, 

suggesting moderate performance in detecting people compared to other classes. 

Interestingly, the "NO-Hardhat" and "NO-Mask" classes have lower precision values 

compared to their counterparts ("Hardhat" and "Mask"), indicating that the model may 

struggle more in detecting the absence of these safety items. 

Overall, the precision-confidence curves highlight the model's strengths in detecting 

certain classes like "Mask" and "machinery", while also revealing areas where the 

model's performance could be improved, particularly for classes such as "NO-Mask", 

"NO-Safety Vest", and "vehicle". 
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Figure 5.  F1-confidence curves curve 

 

 

The F1-confidence curves provide insights into the balance between precision and recall 

for the object detection model across different classes. As confidence scores increase, 

the F1 scores for most classes tend to improve, indicating a better balance between 

precision and recall when the model has higher confidence in its predictions. 

However, there are notable differences in the F1-confidence curves among the classes. 

The "Mask" and "machinery" classes maintain high F1 scores across a wide range of 

confidence levels, suggesting a strong and consistent balance between precision and 

recall in detecting these objects. On the other hand, classes like "NO-Mask", "NO-

Safety Vest", and "vehicle" show lower F1 scores, especially at lower confidence levels, 

indicating room for improvement in achieving a good balance between precision and 

recall for these classes. 

The "Hardhat", "Safety Vest", and "Safety Cone" classes exhibit similar F1-confidence 

curves, with F1 scores increasing steadily as confidence levels rise. This suggests that 

the model maintains a relatively good balance between precision and recall in detecting 

these safety-related objects. 

The "Person" class has an F1-confidence curve that falls in the middle range compared 

to other classes, indicating a moderate balance between precision and recall in detecting 

people. 

Interestingly, the "NO-Hardhat" and "NO-Mask" classes have lower F1 scores 

compared to their counterparts ("Hardhat" and "Mask"), suggesting that the model may 

have more difficulty achieving a good balance between precision and recall when 

detecting the absence of these safety items. 

The dashed black line represents the overall F1 score across all classes at an IoU 

threshold of 0.5, which reaches a value of 0.488 at the highest confidence level. This 

indicates that, on average, the model achieves a moderate balance between precision 

and recall when considering all classes together. 

Overall, the F1-confidence curves highlight the model's strengths in maintaining a good 

balance between precision and recall for certain classes like "Mask" and "machinery", 

while also revealing areas where the model's performance could be improved to achieve 

a better balance, particularly for classes such as "NO-Mask", "NO-Safety Vest", and 

"vehicle". 
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Figure 6. prediction demonstration 

 

 

Conclusion  

This study demonstrates the effectiveness of the YOLOv4-based deep learning 

approach for detecting Personal Protective Equipment (PPE) across various classes. The 

proposed model architecture incorporates convolutional layers, spatial pyramid 

pooling, skip connections, and data augmentation techniques. They exhibited good 

performance in identifying certain PPE classes, such as Mask and machinery. 

Challenges persisted in accurately detecting the absence of safety items and localizing 

vehicles, as evidenced by the class-wise performance metrics and precision-recall trade-

offs. 

The analysis of class-specific performance metrics shows the model's strengths and 

weaknesses. Although the Mask class achieves high precision and the machinery class 

demonstrates strong recall, the vehicle and Person classes face difficulties in accurate 

localization and classification, as indicated by their higher box, object, and 

classification losses. 

The findings of this study have significant implications for real-world safety monitoring 

systems in industrial settings. Organizations can enhance worker safety, ensure 

compliance with regulations, and proactively identify potential safety hazards by 

integrating the proposed YOLOv4-based approach. It is crucial to recognize the 

limitations and continually strive for improvements in PPE detection accuracy across 

all classes. 

To effectively address the problem of PPE non-compliance in the construction industry, 

a multi-faceted approach is necessary. This should include safety training and education 

for workers, with a focus on raising awareness about the importance of PPE and the 

specific hazards associated with different tasks. Training should also cover the proper 

selection, use, and maintenance of safety equipment, as well as the potential 

consequences of non-compliance. In addition, companies should invest in high-quality, 

comfortable, and adaptable PPE that is well-suited to the specific needs of their workers 

and the environments in which they operate. 
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Equally important is the need for strong leadership and management support for safety 

initiatives. Company leaders and supervisors must prioritize safety as a core value and 

actively promote a culture of compliance. This can involve regular safety audits and 

inspections, as well as the implementation of incentive programs that reward workers 

for consistent PPE use. Managers should also be trained to recognize and address 

instances of non-compliance promptly and effectively, using a combination of 

education, coaching, and, when necessary, disciplinary action. 

Adoption of modern monitoring systems can significantly improve PPE compliance 

rates. These technologies can assist businesses in promptly and efficiently identifying 

and addressing noncompliance issues through offering real-time data on PPE usage and 

enabling targeted responses. The implementation of these systems is accompanied by 

clear communication about their purpose and benefits, as well as safeguards to protect 

worker privacy and prevent the misuse of data. 
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