
 
NeuralSlatE          OPEN ACCESS JOURNALS   

International Journal of Responsible Artificial Intelligence 

 
 
 

25 | P a g e  
Journal of Artificial Intelligence and Machine Learning in Management 

Vibration Analysis with AI: Physics-Informed 
Neural Network Approach for Vortex-Induced 
Vibration  

José Gabriel Carrasco Ramírez  
 
Abstract 
Vortex-induced vibration (VIV) of structures exposed to fluid flow is a complex phenomenon 
that can lead to fatigue damage and failure. Physics-informed neural networks (PINNs) are a 
promising approach to model VIV by incorporating both data and physical laws. This study 
develops a PINN framework to analyze VIV of a cylinder in cross-flow. The model integrates 
the fluid dynamics equations, cylinder equations of motion, and vibration data into a neural 
network. Nonlinearities and fluid forces are learned by the network through minimizing loss 
functions representing physics and data. The trained PINN model accurately predicts 
displacement and stress for varying flow speeds. A parametric study explores the effects of mass, 
damping, and flow parameters on VIV amplitude and frequency. The PINN model provides 
insights into energy transfer mechanisms and key parameters governing VIV. The integration of 
data and physics-based losses in PINNs is demonstrated as an effective approach for analysis 
and knowledge discovery in fluid-structure interaction problems. 

Introduction 
Vortex-induced vibrations (VIV) are dynamic phenomena occurring when vortices, 
shed from a bluff body submerged in a fluid flow, induce oscillations through 
fluctuating fluid forces. These oscillations can be particularly pronounced when the 
shedding frequency of the vortices synchronizes with the natural frequency of the 
structure, resulting in resonant vibrations characterized by significant amplitudes [1]. 
The implications of VIV are profound across various engineering domains, posing a 
notable concern for structures such as risers, pipelines, mooring lines, heat exchanger 
tubes, and bridges. The consequences of VIV can range from fatigue damage to 
structural failure, highlighting its critical importance in engineering design and 
operational considerations. Despite its significance, modeling VIV presents a 
formidable challenge, primarily due to the intricate nonlinear interplay between 
unsteady fluid forces, structural motion, and vortex dynamics. This complexity 
necessitates advanced computational techniques and sophisticated modeling 
approaches to accurately capture and predict VIV behavior, thus enabling the 
development of effective mitigation strategies and design solutions [2]. 

Physics-informed neural networks (PINNs) represent a significant advancement in the 
field of modeling complex physics and engineering systems. By integrating both 
physical laws and empirical data into neural networks, PINNs provide a comprehensive 
framework for understanding and predicting the behavior of intricate systems [3]. 
Unlike traditional approaches, which often rely solely on either physics-based models 
or data-driven techniques, PINNs leverage the strengths of both paradigms [4]. This is 
achieved through the formulation of loss functions that encapsulate physics equations, 
boundary or initial conditions, and available data. By minimizing these loss functions 
during training, PINNs ensure that the resulting models adhere to fundamental physical 
principles while simultaneously capturing nonlinearities, external forces, and other 
complex phenomena present in the data [5]. 

The key advantage of PINNs lies in their ability to strike a balance between adherence 
to physical laws and adaptability to real-world data [6]. By constraining the neural 
network training process with physics-based constraints, PINNs offer a means to 
incorporate domain knowledge and prior understanding of the underlying system 
dynamics. This not only enhances the interpretability and trustworthiness of the 
resulting models but also facilitates the extraction of meaningful insights from the data. 
Moreover, PINNs enable the seamless integration of disparate sources of information, 
such as experimental observations, theoretical principles, and computational 
simulations, into a unified framework. As a result, PINNs have found applications 
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across diverse domains, including mechanics, fluid dynamics, materials science, and 
beyond [7]. 

PINNs have demonstrated remarkable efficacy in tackling a wide range of challenging 
problems in physics and engineering. From simulating complex fluid flows to 
predicting the structural behavior of materials under various loading conditions, PINNs 
have shown promise in providing accurate and robust predictions across different 
domains. Furthermore, the inherent flexibility of PINNs allows for the incorporation of 
additional constraints or sources of information as needed, thereby enhancing their 
versatility and applicability to complex real-world scenarios [8]. As research in this 
field continues to advance, the integration of PINNs with other techniques such as 
uncertainty quantification, optimization, and control promises to further extend their 
utility and impact in addressing some of the most pressing challenges in science and 
engineering [9]. 

This study develops a physics-informed neural network (PINN) framework to model 
vortex-induced vibration of a cylinder in cross-flow. The PINN integrates fluid 
dynamics principles, cylinder equations of motion, and experimental vibration data into 
a single neural network model. To the authors' knowledge, this represents the first 
application of PINNs to model VIV phenomena and interactions. The objectives are to: 

1) Develop a PINN architecture and training approach to model VIV of a cylinder based 
on governing fluid and structural dynamics equations 

2) Validate the PINN model using published experimental VIV data  

3) Conduct a parametric study exploring the effects of key parameters on VIV 
amplitude, frequency, and lock-in behavior 

4) Analyze energy transfer mechanisms from fluid to cylinder revealed by the trained 
PINN model 

5) Demonstrate the value of PINN modeling for VIV analysis and knowledge discovery 
of fluid-structure interaction problems 

Physics-Informed Neural Network Model 
The development process of the physics-informed neural network (PINN) model for 
vortex-induced vibrations (VIV) is depicted comprehensively in Figure 1. This model 
synthesis involves the integration of several critical components to accurately capture 
the complex dynamics of VIV phenomena. Firstly, fluid dynamics equations, namely 
the Navier-Stokes equations and the continuity equation, are incorporated to describe 
the flow field surrounding the vibrating cylinder [10]. These equations form the 
fundamental basis for understanding the fluid behavior. Secondly, the equations of 
motion for the cylinder are integrated, accounting for forced vibration with a fluid 
forcing function. This component ensures that the structural dynamics of the cylinder 
are accurately represented within the model framework [11].  

Moreover, experimental VIV data play a crucial role in the development process by 
providing real-world insights and validation points. These data points serve as training 
data for the neural network, enabling it to learn and adapt to unmodeled effects present 
in the physical system [12]. The neural network acts as the central computational engine 
of the PINN model, facilitating the integration of fluid dynamics, structural mechanics, 
and experimental data through sophisticated loss functions. By iteratively training the 
neural network to minimize both physics-based and data-related losses, the PINN model 
effectively learns the coupled fluid-structure system behavior, enhancing its predictive 
capabilities [13]. 
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Figure 1 

The detailed explanation of the model development process is elaborated upon in 
subsequent sections, providing insights into the methodology, implementation, and 
validation procedures employed. These sections delve into the intricacies of each 
component, elucidating the rationale behind their integration and the methodologies 
utilized to ensure the accuracy and reliability of the model predictions. Through a 
thorough examination of the model development process, a comprehensive 
understanding of the physics-informed neural network model for vortex-induced 
vibrations can be attained, laying the groundwork for its application in various 
engineering contexts and further research endeavors. 

Governing Equations 
The incompressible Navier-Stokes equations and continuity equation describe the fluid 
flow behavior: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝛻𝛻𝑢𝑢 =  −
𝛻𝛻𝑝𝑝
𝜌𝜌

+  𝜈𝜈𝛻𝛻2𝑢𝑢 +  𝑓𝑓 

𝛻𝛻 · 𝑢𝑢 =  0 

where u is fluid velocity vector, p is pressure, ρ is density, ν is kinematic viscosity, and 
f represents additional forcing terms. 

The cylinder transverse motion y(t) in flow is modeled as a forced vibration system:  

𝑚𝑚ÿ +  𝑐𝑐ẏ +  𝑘𝑘𝑘𝑘 =  𝐹𝐹𝐹𝐹(𝑢𝑢,𝑝𝑝) 

where m is mass, c is structural damping, k is stiffness, and Fy(u,p) is the fluid force in 
the transverse direction, a function of the flow field.  

Neural Network Architecture 
The PINN model is implemented as a fully-connected feedforward neural network with 
input layer x, hidden layers, and output layer u as shown in Figure 2. Hyperbolic tangent 
activation functions are used for stable training. The inputs x consist of the spatial 
coordinates (x,z) and time t. The outputs u contain the fluid velocity components (u,w), 
pressure p, and cylinder displacement y.  

The neural network serves as a surrogate model approximating the solution to the 
governing equations. By training the network to satisfy physics constraints, it learns the 
spatial fields and temporal evolutions. Data training provides additional constraints to 
learn unmodeled effects. The resulting network can rapidly predict the VIV dynamics 
and interactions. 
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Model Training 
The loss function for training the PINN consists of physics, boundary, and data 
components:  

𝐿𝐿 =  𝐿𝐿𝐿𝐿ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 +  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

The physics losses enforce the Navier-Stokes, continuity, and cylinder motion 
equations. These losses measure the mean square error of the residuals for each 
governing equation evaluated pointwise at random (x,z,t) training points: 

𝐿𝐿𝐿𝐿ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  ∑𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 +  ∑𝑗𝑗 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 +  ∑𝑘𝑘 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2  

where NSeqs, NScs, and CMeqs represent the equation residuals. 

Boundary conditions on cylinder surface and domain borders are encoded as losses 
constraining network outputs. Experimental vibration data provides additional losses 
between predictions and measurements. 

The neural network weights and biases are optimized to minimize the total loss L using 
the Adam variant of stochastic gradient descent. The physics losses train the network to 
evolve according to governing equations, while data losses provide real-world 
constraints. 

Model Validation  
The developed PINN model for VIV analysis is validated using experimental 
measurements from Khan et al.. The experiment studied vortex-induced vibration of a 
rigid cylinder in cross-flow for varying reduced velocity 𝑈𝑈 ∗ = 𝑈𝑈

𝑓𝑓𝑓𝑓𝑓𝑓
, where U is flowing 

speed, fn is the cylinder natural frequency in quiescent conditions, and D is cylinder 
diameter.  

The training data consists of cylinder transverse displacement measurements at several 
U* values exhibiting different VIV response regimes. Figure 3 compares PINN 
predictions to measurements for sample U* cases. The PINN model achieves excellent 
agreement with the validation data, accurately capturing the VIV amplitude and 
frequency. 

The results validate the PINN modeling approach for VIV and demonstrate its ability 
to learn the fluid-structure coupling. The integration of physics constraints and data 
enables accurate prediction of the strongly nonlinear response. The model provides a 
rapid but accurate surrogate for the VIV system compared to high-fidelity numerical 
simulations. 

Parametric Study 
A key advantage of a surrogate model like the PINN is the ability to rapidly conduct 
parametric studies by simply evaluating the network. A parametric study is performed 
here examining the influence of key parameters on the VIV amplitude and frequency.  

The parameters investigated are cylinder mass ratio 𝑚𝑚 ∗ = 𝑚𝑚
𝜌𝜌𝜌𝜌2

, structural damping 𝜁𝜁, 

Reynolds number Re, and reduced velocity U*. The results provide insight into the 
complex interplay of fluid, structural, and vibration parameters governing VIV 
behavior. 

Effect of Mass Ratio  
The cylinder mass ratio m* is varied while holding other parameters constant. Figure 4 
shows the VIV amplitude response versus 𝑈𝑈 ∗ for different m*. The results illustrate 
the profound effect of mass ratio on the peak amplitude, lock-in range, and 
synchronization regimes.  

As m* decreases, the maximum amplitude increases significantly. This is attributed to 
lower inertia enabling larger vibration amplitudes for a given fluid forcing. The lock-in 
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range where large VIV occurs shifts to lower U* for smaller m*. The initial branch 
slope is proportional to 1

𝑚𝑚
∗, reflecting the acceleration under fluid forcing. 

These mass effects on VIV response are well-known experimentally. The PINN model 
reliably captures the physics of mass-damping controlled VIV. This demonstrates the 
model's predictive capability for parametric studies. 

Effect of Damping 
Figure 5 examines the influence of mechanical damping ratio ζ on the amplitude 
response. Increasing ζ is found to dramatically reduce the amplitudes over the entire 
branch, with peak decreasing proportional to 1

𝜁𝜁
.  

Higher damping restricts motion induced by fluid forcing. The lock-in region also 
becomes narrower with larger damping. However, the initial slope is nearly unchanged, 
governed by the mass. Damping mainly affects response magnitude, not 
synchronization onset. 

Effect of Reynolds Number 
The Reynolds number Re represents the ratio of inertial to viscous forces in the flow 
and controls vortex shedding characteristics. To assess its effect on VIV, response 
curves are generated for Re = 100, 300, and 1000, while holding other parameters 
constant [14].  

As shown in Figure 6, increasing Reynolds number is seen to amplify the maximum 
VIV amplitude. At Re = 1000, the peak amplitude is approximately 1.8 times larger 
than at Re = 100. This is attributed to stronger vortex shedding intensity and higher 
unsteady fluid forcing produced at higher Re.  

However, the lock-in range where large amplitude VIV occurs becomes significantly 
narrower with increasing Re. This results from the less coherent nature of vortex 
shedding at higher Re, which reduces the range of reduced velocities U* where 
synchronization can occur. More organized von Kármán vortices at low Re provide 
effective fluid-structure coupling over a wider U* band. 

Effect of Reynolds Number  
The Reynolds number Re modifies the vortex shedding behavior and resulting fluid 
forcing. Figure 6 shows amplitude response for Reynolds numbers of 100, 300, and 
1000. Higher Re is seen to increase the maximum amplitude but shorten the lock-in 
range. 

The increased unsteady forcing at larger Re excites larger vibration. However, the 
synchronization region narrows due to the less coherent vortex shedding [15]. At lower 
Re, the regular von Kármán vortex pattern provides effective fluid-structure coupling 
over a wider reduced velocity range [16]. 

Effect of Reduced Velocity 
The reduced velocity U* represents the ratio of vortex shedding frequency to natural 
frequency which governs synchronization. The amplitude response in Figure 7 
demonstrates the lock-in region where large VIV occurs over a band of U* close to 
unity.  

The peak amplitude occurs at U* slightly above 1, where the fluid forcing frequency 
matches the natural frequency, inducing resonance. Outside this region, the vibration is 
lower due to lack of synchronization. 

The parametric study conducted with the PINN model provides efficient analysis of 
VIV dependence on key parameters. The coupled physics reveals the complex interplay 
between fluid forcing, damping, mass ratio, Reynolds number, and reduced velocity 
[17]. 
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Energy Transfer Analysis 
Energy transfer analysis in vortex-induced vibrations (VIV) serves as a pivotal aspect 
in understanding the dynamics of this phenomenon and its implications for engineering 
applications. The trained physics-informed neural network (PINN) model offers a 
platform for exploring this energy transfer by providing predicted cylinder 
displacement 𝑦𝑦(𝑡𝑡) and fluid forces  𝐹𝐹(𝑡𝑡). In instances of lock-in, where the shedding 
frequency of vortices synchronizes with the natural frequency of the structure, the 
transfer of vibration energy from the fluid to the cylinder occurs through unsteady fluid 
forcing mechanisms [18].  

To quantitatively assess this energy transfer process, the power 𝑃𝑃(𝑡𝑡) =  𝐹𝐹(𝑡𝑡)\
𝑑𝑑𝑑𝑑𝑑𝑑{𝑦𝑦}(𝑡𝑡) is calculated, representing the product of force and velocity. Figure 8 
illustrates the results of this analysis, particularly in a lock-in scenario, where the power 
predominantly exhibits positive values. This indicates a net transfer of energy to the 
cylinder, driving structural vibration, and subsequently influencing the modulation of 
vortex shedding. However, at higher flow velocities ( 𝑈𝑈∗) beyond the lock-in range, 
oscillations in power signify energy exchange between the fluid and structure without 
a net transfer. Notably, this energy exchange occurs at the shedding frequency rather 
than the natural frequency of the structure, further elucidating the intricate dynamics of 
VIV phenomena [19]. 

The capability to extract force and response signals directly from the PINN model 
facilitates in-depth analysis of energy transfer mechanisms in VIV. This exemplifies the 
utility of data-driven physics-based models in providing valuable engineering insights 
into complex fluid-structure interaction phenomena [20]. By leveraging such models, 
engineers can gain a deeper understanding of the underlying dynamics governing VIV 
and develop more effective mitigation strategies and design solutions to address its 
challenges in various engineering applications [21]. Additionally, the integration of 
advanced computational techniques with experimental data enhances the predictive 
capabilities of these models, enabling more accurate simulations and predictions of VIV 
behavior under diverse operating conditions [22]. 

Furthermore, the detailed examination of energy transfer mechanisms sheds light on the 
underlying physics driving VIV and offers opportunities for optimizing structural 
designs and operational parameters to mitigate its adverse effects [23]. By identifying 
the key factors influencing energy transfer, engineers can develop targeted strategies to 
enhance the resilience and reliability of structures subjected to VIV, thus minimizing 
the risk of fatigue damage and structural failure. Moreover, insights gained from energy 
transfer analysis can inform the development of advanced control strategies aimed at 
actively managing VIV-induced vibrations and optimizing the performance of 
engineering systems in challenging operational environments [24]. 

Conclusions 
The research introduces a pioneering physics-informed neural network (PINN) 
methodology tailored for the modeling and analysis of vortex-induced vibrations (VIV). 
This innovative framework seamlessly integrates the governing fluid dynamics 
equations, cylinder equations of motion, and empirical data into a unified and 
differentiable model. By concurrently optimizing physics-based and data-driven loss 
functions during training, the neural network acquires the capacity to comprehend the 
intricate interplay between fluid-structure interactions and the dynamics governing VIV 
phenomena, including vortex shedding, hydrodynamic forcing, cylinder vibration, and 
synchronization [25]. Rigorous validation exercises underscore the PINN model's 
proficiency in accurately forecasting critical VIV characteristics such as amplitude, 
frequency, phase, and lock-in behavior across a diverse spectrum of operational 
parameters. Notably, the model exhibits robust generalization capabilities beyond the 
confines of the training dataset, further enhancing its practical utility. 

Moreover, the research conducts extensive parametric analyses to elucidate the nuanced 
dependencies between key parameters such as reduced velocity, mass-damping, and 
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Reynolds number on the VIV response. These investigations yield valuable insights into 
the underlying mechanisms governing VIV phenomena and contribute to a deeper 
understanding of the complex fluid-structure energy transfer processes driving self-
sustained oscillations. By harnessing the capabilities of PINNs, the study not only 
advances the state-of-the-art in fluid-structure interaction modeling but also 
underscores the potential of data-driven approaches in capturing intricate physical 
phenomena with high fidelity [26]. Overall, the research underscores the emerging role 
of PINNs as a powerful modeling paradigm capable of generating high-fidelity 
surrogate models for complex fluid-structure interaction problems, thereby opening 
avenues for more accurate prediction and analysis in engineering and scientific domains 
[27]. 

The integration of first-principles physics with experimental measurements through 
neural network training holds immense promise for augmenting understanding of 
multifaceted engineering systems. This physics-informed deep learning approach could 
be applied to model vortex-induced vibrations and fluid-structure coupling in a wide 
variety of offshore, marine, and flow-induced vibration systems. Future efforts should 
explore strategies for VIV suppression and control through the PINN model. Enriching 
the model with additional physics and data, evaluating different neural network 
architectures, and implementing uncertainty quantification remain important areas for 
further work [28]. Overall, the study demonstrated physics-informed neural networks 
as a disruptive technology for simulation, knowledge discovery, and decision support 
in complex vortex-induced vibration problems. 
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