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Abstract 

Robotics has become increasingly prevalent in various sectors, including domestic and industrial 

cleaning. As their usage grows, so does the need to understand and mitigate their environmental 

impacts. Life Cycle Assessment (LCA) is a recognized method for assessing the environmental 

impacts of products and services throughout their life cycle, from production to disposal. It helps 

in identifying key areas where environmental impacts are significant and in developing strategies 

for mitigation. Despite its widespread application in various industries, the specific application 

to cleaning robots remains under-explored. This study introduces a conceptual model for a Life 

Cycle Assessment (LCA) method for cleaning robots. It identifies key environmental impact 

indicators across four major stages of a cleaning robot's life cycle: production, transport, 

operations, and end-of-life. The purpose is to provide a comprehensive method for future 

assessments of the ecological footprint of these robots. In the production phase, the proposed 

model suggests evaluating greenhouse gas (GHG) emissions, carbon intensity, the share of 

renewable energy used, and the proportion of recycled or renewable materials in manufacturing. 

These indicators aim to quantify the environmental impacts associated with the manufacturing 

process of cleaning robots.  The transportation stage is conceptualized to include assessments 

of GHG emissions during transit, the carbon intensity of transport methods, and the use of low-

carbon and renewable energy in logistics. This aspect of the assessment focuses on the 

environmental impact of distributing cleaning robots from manufacturers to end-users. For the 

operational phase, the model proposes metrics such as electricity consumption, renewable 

electricity usage, Power Usage Effectiveness (PUE), and Carbon Usage Effectiveness (CUE). 

These indicators are designed to measure the energy efficiency and carbon footprint of cleaning 

robots during their use. The end-of-life stage includes metrics like the total electronic waste (E-

Waste) generated, recycling rates, Electronics Disposal Efficiency (EDE), and the percentage of 

e-waste sent to landfills. These indicators evaluate the environmental impact of cleaning robots 

at the end of their usable life and for guiding sustainable disposal and recycling practices. This 

research attempts to contribute to the broader field of sustainable robotics by providing a 

framework to evaluate and improve the environmental performance of cleaning robots. 

Indexing terms: Life Cycle Assessment (LCA), Environmental Impact, Cleaning 

Robots, Sustainability in Robotics, Carbon Footprint, Energy Efficiency, E-Waste 

Management 

Introduction 

The rise of cleaning robots in the last decade marks a notable shift in both domestic and 

commercial cleaning practices. Initially seen as a novelty, these robotic devices have 

become increasingly mainstream, due to their ability to automate mundane tasks like 

vacuuming, mopping, and even window cleaning. In domestic settings, cleaning robots 

have become popular for their convenience and time-saving benefits. They offer 

homeowners the luxury of maintaining clean living spaces with minimal effort, running 

scheduled cleaning cycles and even recharging themselves autonomously. In 

commercial spaces, these robots are valued for their efficiency and consistency, capable 

of maintaining large areas such as office spaces, hotels, and shopping centers with less 

manpower and often greater precision than traditional methods. This shift towards 

automated cleaning solutions reflects a broader trend in embracing smart technology in 

everyday life, where convenience and efficiency are highly prized. 

While cleaning robots offer apparent immediate benefits, their long-term environmental 

impact remains a subject of growing concern and investigation. The environmental 

footprint of these devices encompasses their manufacturing, operation, and eventual 

disposal. The manufacturing process involves the extraction and processing of various 
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materials, including plastics and metals, which has its own environmental implications. 

Additionally, the energy consumed during their operation, although typically less than 

that of larger, manual cleaning equipment, still contributes to the overall energy demand 

and associated carbon emissions. Furthermore, the disposal of these robots poses 

significant environmental challenges. Their electronic components and batteries are not 

only difficult to recycle but can also be harmful to the environment if not disposed of 

properly.  

Figure 1. Cleaning robotics' environmental impact by stage 

Stage 1. 

Manufacturing 

 

Resource-intensive with significant environmental impacts due to materials 

extraction and global logistics. 

Stage 2. 

 

Transportation 

 

 

Carbon emissions from global logistics and supply chain movement. 

Stage 3. 

Operation 

 

Energy consumption varies based on the energy source; indirect impacts on 

employment and resource use. 

Stage 4 

Disposal 

 

Challenges in recycling hazardous materials and managing waste due to rapid 

obsolescence. 

 

In light of these concerns, the future of cleaning robots depends on balancing the 

benefits they offer with their environmental impact. Innovations in sustainable 

manufacturing, energy-efficient design, and recyclable materials are vital in reducing 

the ecological footprint of these devices. Companies producing cleaning robots are 

increasingly aware of these challenges and are beginning to integrate eco-friendly 

practices into their design and manufacturing processes. Furthermore, there is a growing 

emphasis on the life cycle assessment of these products, aiming to understand and 

minimize their impact from production to disposal. The development of effective 

recycling programs and regulations around electronic waste is also crucial in mitigating 

the environmental impact of these robots.  

The environmental footprint of robotics encompasses several stages: manufacturing, 

operation, and disposal. The manufacturing process of robots is resource-intensive, 

involving the extraction and processing of various raw materials such as metals, 

plastics, and rare earth elements. These materials are necessary for the construction of 

electronic components and mechanical parts, but their extraction and processing often 

entail significant environmental impacts, including habitat destruction, water and air 

pollution, and high energy consumption. Moreover, the global supply chain involved in 

robot manufacturing can lead to additional carbon emissions due to transportation and 

logistics. 

During operation, robots consume energy, and the source and efficiency of this energy 

use are critical factors in determining their environmental impact. While robots can 

enhance operational efficiency and reduce waste in some industries, their energy 

consumption can contribute to carbon emissions, especially if they rely on non-

renewable energy sources. This aspect becomes increasingly important as robots 

become more widespread and operate over extended periods. In addition to direct 

energy consumption, the indirect environmental impact of robotics in operation, such 

as changes in employment patterns and resource utilization, also warrants 
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consideration. These impacts are often more challenging to quantify but are crucial for 

a comprehensive understanding of the ecological footprint of robotics. 

The disposal of robots represents a significant environmental challenge, primarily due 

to the materials used in their construction. Many components of robots, such as batteries 

and electronic circuits, contain hazardous materials that can be harmful to the 

environment if not disposed of properly. The recycling and repurposing of these 

materials are challenging, often requiring specialized processes. Furthermore, the rapid 

pace of technological advancement in robotics means that devices can become obsolete 

quickly, potentially leading to increased waste.  

Life Cycle Assessment (LCA) 

Life Cycle Assessment (LCA) primarily focuses on examining physical products through 

a comprehensive lens that encompasses their entire life cycle [1]. The concept of a 

"product system" is central to this approach, emphasizing the need to consider every 

single process involved in delivering a product's function. For instance, when evaluating 

a product like car fuel, the assessment doesn't just focus on the fuel's composition or its 

immediate environmental impact. Instead, it examines the complete journey of the 

fuel—from its extraction, processing, distribution, and eventual use in propelling a car. 

This view is essential in understanding the cumulative environmental footprint of a 

product, as it includes every stage from raw material acquisition to end-of-life disposal 

or recycling.  

The core philosophy behind adopting a life cycle perspective in environmental 

assessments is the prevention of burden shifting. This concept refers to the unintended 

transfer of environmental impacts from one stage of a product's life cycle or process to 

another. Often, efforts aimed at reducing environmental harm in one aspect of a 

product's life can inadvertently lead to increased impacts in another. For example, a 

process modification in manufacturing that reduces waste or energy consumption might 

lead to increased emissions or resource use during the transportation or usage phase. 

Such shifts can sometimes result in greater overall environmental damage, negating the 

initial well-intentioned efforts. LCA aims to identify these potential trade-offs early in 

the process, allowing for a more balanced and genuinely sustainable approach to 

environmental management. 

The significance of LCA in identifying and mitigating burden shifting cannot be 

overstated. This approach provides a comprehensive framework for understanding the 

full spectrum of environmental impacts associated with a product or process. By 

considering each stage of a product's life cycle, LCA helps in pinpointing where the 

greatest environmental burdens occur and where interventions would be most effective. 

It also aids in identifying opportunities for improvement that might not be apparent 

when examining processes in isolation. For instance, a life cycle perspective could 

reveal that changes in material sourcing or product design could significantly reduce 

environmental impacts, even if these changes might initially seem more resource-

intensive.  

The foundation of Life Cycle Assessment (LCA) lies in the application of natural 

science principles, in the quantification of potential environmental impacts. This 

process is grounded in empirical data collection, where various environmental flows are 

measured using scientific instruments like water gauges or particle counters. These 

measurements are typically conducted at industrial sites or within specific processes, 

providing a quantitative basis for the assessment. LCA relies on established models to 

understand the relationship between emissions or resource consumption and their 

subsequent environmental impacts. These models are based on proven causal 

relationships, such as the chemical reactions that lead to the formation of atmospheric 

ground-level ozone involving nitrogen oxides and volatile organic compounds. 

Similarly, empirical observations, like the correlation between phosphorous 

concentration in lakes and the impact on biodiversity and populations, are integral to 

LCA.  
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Despite its strong scientific underpinnings, LCA also incorporates elements of value 

judgment, in stages where environmental problems are weighted to assess a product 

system's overall impact. This aspect is most apparent when different types of 

environmental issues are evaluated and prioritized, which inevitably involves subjective 

decisions. LCA methodologies tries to handle these value judgments in a consistent and 

transparent manner. The framework allows practitioners some flexibility in modeling 

choices, enabling them to integrate their values and perspectives into the assessment 

process [2], [3]. 

The evolution of LCA reflects a growing global awareness and concern for 

environmental issues, including pollution, energy use, and material scarcity. Since the 

1960s, when life-cycle-oriented methods first emerged, there has been significant 

progress both in the development of methodologies and their practical applications. 

This growth is driven by the increasing recognition of the importance of considering 

the entire life cycle of products in understanding and mitigating their environmental 

impacts. LCA has become an essential tool for businesses, policymakers, and 

environmental organizations, offering a detailed and holistic perspective on the 

environmental implications of products and processes [4], [5].  

The foundation of Life Cycle Assessment (LCA) lies in the rigorous application of 

natural science principles, in the quantification of potential environmental impacts. This 

process is grounded in empirical data collection, where various environmental flows are 

measured using scientific instruments like water gauges or particle counters. These 

measurements are typically conducted at industrial sites or within specific processes, 

providing a quantitative basis for the assessment. Furthermore, LCA relies on 

established models to understand the relationship between emissions or resource 

consumption and their subsequent environmental impacts. These models are based on 

proven causal relationships, such as the chemical reactions that lead to the formation of 

atmospheric ground-level ozone involving nitrogen oxides and volatile organic 

compounds. Similarly, empirical observations, like the correlation between 

phosphorous concentration in lakes and the impact on biodiversity and populations, are 

integral to LCA. This scientific rigor ensures that LCA provides a reliable and objective 

basis for understanding the environmental footprint of products and processes. 

LCA also incorporates elements of value judgment, in stages where environmental 

problems are weighted to assess a product system's overall impact. This aspect is most 

apparent when different types of environmental issues are evaluated and prioritized, 

which inevitably involves subjective decisions. LCA methodologies strive to handle 

these value judgments in a consistent and transparent manner. The framework allows 

practitioners some flexibility in modeling choices, enabling them to integrate their 

values and perspectives into the assessment process [6]. It can be tailored to specific 

contexts or objectives, providing a comprehensive view of environmental impacts that 

aligns with the values and goals of the assessment's stakeholders. 

Life Cycle Assessment (LCA) evaluates the environmental impacts of a 

cleaning robo 

Life Cycle Assessment (LCA) evaluates the environmental impacts of a cleaning robot, 

throughout its entire life cycle. This process encompasses four distinct stages: 

production, transportations, operations, and end-of-life (disposal). 

Production 

GHG Emissions from Production 

The emissions are quantified in terms of metric tons of carbon dioxide equivalent 

(CO2e), a standard unit that accounts for the global warming potential of different 

greenhouse gases. This measure helps in comparing the relative impact of various 

activities and materials involved in the production process. For instance, the energy-

intensive processes like metal refining and the production of electronic components 

contribute significantly to the total CO2e. Additionally, the transportation of raw 
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materials and finished products adds to the overall emissions, with the impact varying 

based on factors such as transport distance and mode. 

Table 1. Production stage  

Category Measure Description 

GHG Emissions 

from Production 

Metric tons of 

CO2 equivalent 

(CO2e) 

Total greenhouse gas emissions 

generated during the manufacturing of 

cleaning robots, including all stages from 

raw material extraction to the final 

assembly. 

Carbon Intensity of 

Production Methods 

Metric tons of 

CO2e per unit 

Greenhouse gas emissions per unit of 

production, which could be measured per 

cleaning robot or per dollar of revenue 

generated from the sale of cleaning 

robots. 

Share of Renewable 

Energy Used in 

Production 

Percentage (%) Proportion of renewable energy sources 

(such as solar, wind, hydro, etc.) used in 

the manufacturing process of cleaning 

robots. 

Share of Recycled or 

Renewable 

Materials Used in 

Production 

Percentage (%) Proportion of materials used in the 

production of cleaning robots that are 

either recycled or sourced from 

renewable resources. 

 

Total greenhouse gas (GHG) emissions associated with the manufacturing of cleaning 

robots encompass a range of activities contributing to the overall carbon footprint. At 

the initial stage, raw material extraction is a significant contributor to emissions. The 

production of cleaning robots requires a variety of materials, including plastics, metals, 

and electronic components. The extraction of these materials, such as mining for metals 

and drilling for petroleum (used in plastics), involves energy-intensive processes. These 

processes often rely on fossil fuels, leading to considerable GHG emissions. Moreover, 

the transportation of these raw materials to manufacturing sites further adds to the 

emission levels, depending on the distance and mode of transport used. 

The refinement and processing of raw materials into usable forms is another stage in 

the manufacturing of cleaning robots that contributes to GHG emissions. Metals must 

be smelted and refined, which is energy-intensive and typically powered by carbon-

emitting energy sources. Plastics, derived from petrochemical processes, involve 

significant energy use and emit GHGs both during their production and processing. 

Electronic components, which are integral to cleaning robots, also require energy-

intensive manufacturing processes. The production of semiconductors, for instance, not 

only consumes large amounts of electricity but also involves the use of potent 

greenhouse gases like sulfur hexafluoride and nitrogen trifluoride during the 

manufacturing process. 

The assembly phase of cleaning robots is characterized by both direct and indirect GHG 

emissions. Direct emissions result from the energy used in the assembly process itself, 

which may involve soldering, welding, and the operation of assembly line machinery. 

These processes are often powered by electricity, the generation of which may 

contribute to GHG emissions, depending on the energy mix of the region. Indirect 

emissions arise from the broader operational aspects of manufacturing facilities, 

including heating, cooling, and lighting. Additionally, the use of certain chemicals and 

solvents in the assembly process can result in the release of GHGs. 

The production of packaging materials, which often involves the use of plastics and 

cardboard, contributes to emissions through both material production and processing. 

The distribution phase, encompassing the transportation of finished products to 

warehouses, retailers, or directly to consumers, further adds to the carbon footprint. This 

transportation is typically reliant on fossil fuel-powered vehicles, with emissions 

varying based on the mode of transport (air, sea, or land) and the distance covered. 
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Carbon Intensity of Production Methods 

The carbon intensity of production methods in the manufacturing of cleaning robots can 

be measured in metric tons of CO2 equivalent (CO2e) per unit. This measure quantifies 

the amount of greenhouse gases emitted per robot produced, encompassing emissions 

from all stages of production, including raw material extraction, processing, assembly, 

and any related logistics. It serves as a key indicator of the efficiency and environmental 

sustainability of production methods, highlighting the relationship between the volume 

of production and the associated carbon footprint. For manufacturers, this metric is 

instrumental in identifying high-emission areas within the production process, guiding 

them towards more sustainable practices, such as adopting renewable energy sources, 

optimizing manufacturing processes for energy efficiency, or selecting materials with 

lower environmental impacts. 

When measured per cleaning robot, the calculation considers all GHG emissions 

directly and indirectly associated with the production of a single unit. This encompasses 

a comprehensive range of activities from raw material extraction, processing, 

manufacturing, assembly, and distribution. For instance, the production of metals and 

plastics, essential components of these robots, involves substantial energy consumption 

and emissions. Similarly, the manufacturing and assembly processes, often reliant on 

electricity and other energy sources, contribute significantly to the overall emissions 

per unit.  

On the other hand, measuring GHG emissions per dollar of revenue generated offers a 

different perspective. This economic-based metric aligns the environmental impact with 

the financial performance of the company, providing an insight into how efficiently the 

company is utilizing resources in terms of GHG emissions for economic output. This 

measure can be informative when comparing companies within the industry or 

assessing the environmental impact of different products. It helps in understanding 

whether higher revenue correlates with proportionately higher emissions or if there are 

efficiencies in production and supply chain that decouple economic growth from GHG 

emissions. This metric is increasingly relevant in the context of sustainable business 

practices and corporate environmental responsibility. 

The GHG emissions per unit of production can vary significantly based on several 

factors. The geographic location of production facilities, for example, plays a crucial 

role as it determines the energy mix used in manufacturing processes. Facilities 

powered by renewable energy sources will have lower GHG emissions per unit 

compared to those relying on fossil fuels. Additionally, the efficiency of production 

processes, the choice of materials, and the logistics involved in the supply chain all 

contribute to the variation in emissions per unit. Advanced manufacturing technologies 

and sustainable material choices can significantly reduce emissions, while efficient 

logistics can minimize the carbon footprint associated with transportation. 

Share of Renewable Energy Used in Production 

The share of renewable energy used in the production of cleaning robots, expressed as 

a percentage, indicates the extent to which renewable sources like solar, wind, hydro, 

and other green energies contribute to the total energy consumption of the production 

process. A higher percentage signifies a greater reliance on renewable sources, 

reflecting a commitment to reducing carbon footprint and mitigating environmental 

impact. This metric not only demonstrates a company's dedication to sustainable 

manufacturing but also aligns with global environmental targets and increasing 

consumer demand for eco-friendly products. 

The integration of renewable energy sources in the manufacturing process of cleaning 

robots is a topic of growing importance in the field, especially given the heightened 

awareness and commitment to sustainability. The proportion of renewable energy 

sources, such as solar, wind, and hydro, used in these processes significantly impacts 

the overall environmental footprint of the final product. When a substantial portion of 

the energy requirements for manufacturing cleaning robots comes from renewables, it 
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directly reduces dependence on fossil fuels and lowers greenhouse gas (GHG) 

emissions.  

Solar energy, among the most widely used renewable sources, offers a viable option for 

powering manufacturing facilities. The adoption of solar panels can be seen in various 

stages of the production chain, from powering machinery used in the assembly of robots 

to running the data centers that support their software development. The feasibility and 

effectiveness of solar energy depend on geographic location and technological 

advancement in photovoltaic cells. Similarly, wind energy, harnessed through turbines, 

is another renewable source increasingly being used in industrial settings. Wind farms 

can provide a significant portion of the energy required for manufacturing operations, 

especially in regions with favorable wind conditions. 

Factories located near hydroelectric power sources can benefit from a consistent and 

reliable supply of energy with minimal GHG emissions. Moreover, advancements in 

small-scale hydroelectric systems have opened new possibilities for their integration 

into manufacturing facilities, allowing for more localized and controlled energy 

generation. Beyond these traditional sources, there is growing interest in other 

renewable technologies such as geothermal and biomass energy, which can provide 

additional sustainable energy solutions for the manufacturing sector. 

Share of Recycled or Renewable Materials Used in Production 

The use of recycled materials in cleaning robots is a significant step towards reducing 

the environmental impact of production. Recycled plastics and metals are commonly 

used in the body and internal components of these robots. For instance, recycled plastics 

can be utilized for casing and structural parts, reducing reliance on plastics derived from 

petrochemicals. Recycled metals, such as aluminum and steel, are also increasingly 

used, especially in structural and mechanical components. These materials often come 

from post-consumer waste, industrial scraps, or end-of-life electronics, contributing to 

a circular economy where materials are reused and kept out of landfills. 

Bioplastics are appealing due to their reduced carbon footprint during production and 

the potential for biodegradability or compostability at the end of the product's life. 

However, the use of bioplastics presents challenges in terms of mechanical properties, 

cost, and the balance between using land for food versus industrial material production.  

The electronics and batteries, components of cleaning robots, are also seeing an increase 

in the use of materials sourced from renewable resources or recycling programs. 

Advances in battery technology include the development of batteries using materials 

that are more abundant and less environmentally damaging. Recycling programs for 

electronics are becoming more sophisticated, allowing for the recovery of valuable 

materials like copper, gold, and rare earth elements. This not only reduces the demand 

for virgin materials but also mitigates the environmental impact associated with mining 

and material extraction. 

In addition to using recycled and renewable materials, manufacturers are focusing on 

the design for disassembly and recycling. This approach involves designing cleaning 

robots in a way that at the end of their life, they can be easily disassembled, and the 

materials can be efficiently separated and recycled. This strategy not only facilitates 

recycling but also promotes the use of materials that can endure the recycling process 

without significant degradation in quality. Supply chain considerations, such as the 

availability and consistency of recycled and renewable materials, play a crucial role in 

their integration into production processes.  

Transportation 

GHG Emissions from Transportation of Cleaning Robots 

Measured in metric tons of carbon dioxide equivalent (CO2e), this metric provides an 

understanding of the environmental impact of the logistics involved in bringing 

cleaning robots to market.  
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Firstly, the mode of transportation is a major determinant of the GHG emissions 

associated with transporting cleaning robots. Road transport, commonly used for short 

to medium distances, typically has a higher emission factor per ton-kilometer compared 

to rail or sea transport. Trucks, which are frequently used for road transport, vary in 

their emissions depending on factors like fuel efficiency, load capacity, and route 

optimization. In contrast, rail and sea transport, often used for longer distances, 

generally have lower CO2e emissions per ton-kilometer but might not be as flexible or 

fast as road transport. Air freight, while the fastest mode, has significantly higher GHG 

emissions and is typically used only for urgent deliveries. 

 

Table 2. Transportation stage 

Category Measure Description 

GHG Emissions from 

Transportation of 

Cleaning Robots 

Metric tons of 

CO2 

equivalent 

(CO2e) 

Total greenhouse gas emissions 

associated with the transportation of 

cleaning robots, from the 

manufacturing site to distribution 

centers, retailers, or end-users. 

Carbon Intensity of 

Transport Methods 

Metric tons of 

CO2e per unit 

Greenhouse gas emissions per unit of 

transportation, which could be 

measured per cleaning robot 

transported or per dollar of revenue 

generated from the sale of transported 

cleaning robots. 

Share of Low-Carbon 

and Renewable Energy 

Used in Transport 

Methods 

Percentage 

(%) 

Proportion of low-carbon and 

renewable energy sources (like electric 

vehicles, biofuels, or solar-powered 

transport) used in the logistics and 

distribution of cleaning robots. 

 

The distance traveled from the manufacturing site to the final destination is another 

critical factor in determining GHG emissions. Longer distances result in higher 

emissions, especially when the manufacturing facilities are located far from key 

markets. Globalization of the supply chain has led to scenarios where parts are 

manufactured in various locations and assembled in different countries, adding to the 

total distance traveled.  

Packaging materials used in the transportation of cleaning robots also contribute to the 

total GHG emissions. While not directly related to the transportation process, the 

production and disposal of these materials add to the overall carbon footprint. The use 

of sustainable, lightweight packaging materials can reduce the overall weight of 

shipments, leading to lower fuel consumption and, consequently, lower GHG emissions 

during transportation. 

Operational efficiency in the logistics chain significantly impacts the GHG emissions 

from transportation. This includes route optimization to reduce travel distances, 

maximizing load capacity to decrease the number of trips required, and employing 

modern, fuel-efficient vehicles. Additionally, the use of technology for better logistics 

management, such as real-time tracking and AI-driven route planning, can further 

enhance efficiency and reduce emissions. 

Carbon Intensity of Transport Methods 

The carbon intensity of transport methods in the distribution of cleaning robots can be 

measured in metric tons of CO2 equivalent (CO2e) per unit. This measure can be 

evaluated in two distinct ways: per cleaning robot transported, which gives a product-

specific insight, or per dollar of revenue generated from the sale of transported cleaning 

robots, offering a more economic perspective.  
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When considering the carbon intensity per cleaning robot transported, the focus is on 

the emissions directly attributable to the movement of each unit from the production 

facility to its final destination. This metric encapsulates the emissions from all modes 

of transport involved – road, rail, air, or sea. The choice of transportation mode plays a 

significant role in determining the carbon intensity. For instance, air freight, while 

expedient, typically has a much higher carbon intensity compared to sea or rail 

transport. Road transport, often used for last-mile delivery, also varies significantly in 

its emissions profile based on factors like vehicle type, fuel efficiency, and route 

optimization.  

Alternatively, analyzing the carbon intensity per dollar of revenue generated provides 

an economic dimension to the assessment. This approach ties the environmental impact 

to the company's financial performance, allowing for a comparative analysis across 

different products, sectors, or companies. It can reveal how efficiently a company is 

managing its logistics in terms of carbon emissions relative to its economic output. A 

higher carbon intensity per dollar of revenue might indicate inefficiencies or an over-

dependence on high-emission transport methods.  

Operational factors are key in determining the carbon intensity of transport methods. 

Efficient logistics management, including route planning, load optimization, and the 

use of modern, fuel-efficient vehicles, can significantly lower the emissions per unit 

transported. The application of technologies such as GPS for real-time tracking, AI for 

route optimization, and the use of electric or hybrid vehicles in the fleet, can further 

enhance these efficiencies. Additionally, the carbon intensity can be influenced by the 

choice of packaging materials; lighter and more compact packaging reduces the overall 

weight and volume of shipments, thereby decreasing fuel consumption and associated 

emissions. Another important consideration is the geographical distance and the 

logistical complexity involved in the transportation of cleaning robots. Longer distances 

and more complex routes typically result in higher carbon intensity.  

Share of Low-Carbon and Renewable Energy Used in Transport Methods 

The share of low-carbon and renewable energy sources used in the transport methods 

for cleaning robots is quantified as a percentage. This measure reflects the extent to 

which sustainable energy sources, such as electric vehicles, biofuels, or solar-powered 

transport, are integrated into the logistics and distribution networks for these robots.  

The utilization of electric vehicles (EVs) in the distribution chain significantly 

contributes to this metric. The percentage of EVs used in the fleet becomes a critical 

factor in assessing the share of low-carbon transport. This adoption is subject to various 

factors, including the availability of EV models suitable for logistics, the infrastructure 

for charging, and the geographical range of the distribution network. 

Biofuels, derived from biological sources like plants or waste, offer another avenue for 

reducing carbon intensity in transport. Unlike traditional fossil fuels, biofuels can 

significantly lower the net carbon emissions, as the carbon dioxide they release during 

combustion is roughly equivalent to what their source materials absorbed during 

growth. The integration of biofuels into the transport fleet, particularly in heavy vehicles 

and shipping, can increase the percentage of renewable energy used in logistics. The 

measure of success in this domain depends on the scalability of biofuel production, the 

compatibility with existing vehicle technologies, and the overall lifecycle emissions of 

the biofuels used. 

Solar-powered transport, although less common in large-scale logistics, provides a 

promising option for increasing the share of renewables in transportation. Solar panels 

can be integrated into the infrastructure of warehouses and distribution centers, 

providing renewable energy for onsite operations and potentially for charging electric 

vehicles. The extent to which solar energy is harnessed in the logistics network directly 

contributes to the overall percentage of renewable energy use. This integration depends 

on factors such as the geographical location, availability of solar technology, and the 

feasibility of incorporating solar power into existing logistics infrastructure. 
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The operational strategies and routes chosen for distribution also play a role in 

determining the share of low-carbon and renewable energy sources used. Optimizing 

routes to reduce travel distances, using vehicles with higher fuel efficiency, and 

consolidating shipments to maximize load capacity are operational measures that, while 

indirectly, contribute to lowering the carbon footprint of transportation. These 

strategies, when combined with the use of low-carbon transport options, can 

substantially increase the proportion of renewable energy in the logistics chain. 

Operations 

Energy Consumption Metrics for Cleaning Robots Operations 

Electricity Consumption 

The electricity consumption of cleaning robots during their operational phase quantified 

in terawatt-hours (TWh). This measure reflects the total electricity used by these robots 

over a specific period, such as annually. 

The energy efficiency of individual cleaning robots helps in determining their overall 

electricity consumption. Advances in battery technology, motor efficiency, and 

intelligent energy management systems have a direct impact on how much electricity a 

single robot consumes during its operation. For instance, robots equipped with high-

efficiency motors and smart systems that optimize cleaning routes and operational 

speed consume less power. Furthermore, the development of advanced battery 

technologies not only enhances the energy density, allowing robots to operate longer on 

a single charge, but also improves the overall lifecycle of the batteries, indirectly 

affecting the total electricity consumption. 

The frequency and duration of use significantly contribute to the total electricity 

consumption of cleaning robots. In commercial settings, where cleaning robots are often 

used extensively and regularly, the electricity consumption can be notably higher 

compared to residential settings. The operational patterns, such as the number of 

cleaning cycles per day and the area covered, directly influence the amount of electricity 

used.  

Renewable Electricity Consumption 

The renewable electricity consumption of cleaning robots, quantified in terawatt-hours 

(TWh), is a critical measure for understanding the sustainability of their energy use. 

This metric reflects the amount of electricity sourced from renewable energy sources 

utilized by these robots during their operational phase.  

When robots are charged using electricity generated from renewable sources, their 

operation becomes more environmentally friendly. The integration of renewables in the 

energy mix for charging infrastructure, such as solar-powered charging stations or grid 

electricity sourced from wind and hydro plants, directly impacts this metric.  

The growing prevalence of renewable energy in the power grid also influences the 

renewable electricity consumption of cleaning robots. As more countries and regions 

expand their renewable energy infrastructure, the proportion of green energy in the grid 

mix increases, indirectly boosting the renewable electricity consumption of all 

electrically powered devices, including cleaning robots. This broader shift towards 

renewables is driven by factors such as technological advancements, decreasing costs 

of renewable energy production, and governmental policies promoting green energy. 

Another aspect impacting this measure is the development and implementation of smart 

charging systems for cleaning robots. Such systems can optimize charging times to 

coincide with periods when renewable energy generation is at its peak, such as during 

daylight hours for solar power. Smart charging not only ensures more efficient use of 

renewable energy but also helps in balancing the grid load, especially in scenarios where 

the grid is heavily reliant on intermittent renewable sources. 
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Table 3. Operations stage 

Category Measure Description 

Energy Consumption Metrics 

Electricity 

Consumption 

Terawatt-

hours (TWh) 

Total electricity used by cleaning robots 

during their operational phase, measured 

over a specific period (e.g., annually). 

Renewable 

Electricity 

Consumption 

Terawatt-

hours (TWh) 

Amount of electricity consumed by 

cleaning robots that is sourced from 

renewable energy (such as solar, wind, 

hydro). 

Power Usage 

Effectiveness (PUE) 

for Cleaning Robots 

Ratio Ratio of total facility power (including 

charging stations, maintenance units, etc.) 

to the power specifically used by the 

cleaning robots. A lower PUE indicates 

higher energy efficiency. 

GHG Emissions Metrics 

GHG Emissions Metric tons of 

CO2 

equivalent 

(CO2e) 

Total greenhouse gas emissions associated 

with the operation of cleaning robots, 

including emissions from electricity 

generation. 

Carbon Intensity of 

Operations 

Metric tons of 

CO2e per unit 

GHG emissions per unit of operation, 

which could be measured per cleaning 

robot or per dollar of revenue generated 

from the use of cleaning robots. 

Carbon Usage 

Effectiveness (CUE) 

for Cleaning Robots 

Ratio The ratio of total CO2e emissions caused 

by the energy consumption of cleaning 

robots to the energy consumption of the 

robots themselves. This metric assesses the 

carbon footprint relative to their energy 

use. 

 

Power Usage Effectiveness (PUE) for Cleaning Robots 

PUE is defined as the ratio of total facility power, encompassing all energy consumed 

by the facility (including charging stations, maintenance units, and ancillary services), 

to the power specifically used by the cleaning robots for their primary function. A lower 

PUE is indicative of higher energy efficiency, meaning a greater proportion of the 

facility's energy is being effectively utilized for the core operation of the robots.  

The design and operation of charging stations significantly influence the PUE for 

cleaning robots. As these stations are a primary energy consumer in the operational 

lifecycle of the robots, their efficiency directly impacts the overall PUE. This includes 

not only the energy used to charge the robots but also any standby power consumed 

when they are not in use. Implementing smart charging technologies that optimize 

charging cycles based on the robots' usage patterns and energy demand, and integrating 

energy-saving features in the charging stations, can substantially improve the PUE. 

Maintenance units and ancillary systems, such as robot diagnostics and repair facilities, 

also contribute to the total facility power consumption. These systems, while essential 

for the upkeep and functionality of the robots, can vary significantly in their energy 

efficiency. Facilities that employ energy-efficient practices, such as using LED lighting, 

energy-saving tools, and automated systems that minimize power usage when not in 

active use, contribute to a lower PUE. Furthermore, the implementation of predictive 

maintenance algorithms can optimize the energy use in these units by scheduling 

maintenance activities based on actual need rather than predetermined intervals. 

Facilities designed with energy efficiency in mind, incorporating features like natural 

lighting, efficient HVAC systems, and proper insulation, contribute to reduced total 

facility power consumption. The use of renewable energy sources to power facility 

operations, including robot charging and maintenance, can significantly improve the 
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PUE by reducing the reliance on external power sources and increasing the share of 

energy used directly for robot operation. 

Operational practices and user behavior within the facilities also impact PUE. Efficient 

deployment of cleaning robots, ensuring they are operating at optimal times and 

conditions, can reduce unnecessary power usage. For instance, scheduling cleaning 

tasks during off-peak energy hours or when the facility's energy demand is low can 

optimize overall power usage. Additionally, training staff on energy-saving practices 

and fostering a culture of energy consciousness can lead to more efficient use of the 

facility and, consequently, a better PUE. Utilizing advanced analytics and IoT 

technologies to monitor energy consumption in real-time allows facility managers to 

identify areas where energy efficiency can be improved. Regular audits and upgrades 

of both the robots and the facility infrastructure ensure that the latest energy-efficient 

technologies are being utilized, further enhancing the PUE. 

GHG Emissions Metrics for Cleaning Robots Operations 

GHG Emissions 

The electricity consumption of cleaning robots during operation and charging 

constitutes the primary source of GHG emissions. These emissions largely depend on 

the source of the electricity used. If the robots are charged using electricity from fossil 

fuel-based power plants, the associated GHG emissions are significantly higher 

compared to charging with electricity from renewable sources like wind, solar, or 

hydroelectric power.  

The efficiency of the cleaning robots themselves impacts GHG emissions. Robots 

designed with energy-efficient motors, optimized cleaning routes, and smart operational 

algorithms consume less electricity, thereby reducing their carbon footprint. Advances 

in battery technology, which can lead to longer operation times and shorter charging 

periods, also contribute to lowering the total GHG emissions.  

Operational practices and usage patterns significantly influence the GHG emissions of 

cleaning robots. For instance, in commercial or industrial settings where cleaning robots 

are used more frequently and for longer durations, the GHG emissions will be higher 

compared to residential settings. The optimization of cleaning schedules to align with 

times of low-carbon intensity in the electricity grid can effectively reduce emissions.  

The broader adoption of cleaning robots also has implications for GHG emissions. As 

these robots become more prevalent in various sectors, their cumulative energy demand 

can contribute significantly to overall GHG emissions. This necessitates the 

development of industry-wide standards and practices aimed at reducing the carbon 

footprint of these robots. The implementation of such standards could include 

requirements for energy-efficient designs, the use of renewable energy in operation, and 

responsible end-of-life management of the robots and their components. 

Carbon Intensity of Operations 

When assessing the carbon intensity per cleaning robot, the focus is on the GHG 

emissions directly attributable to the operation of each individual unit. This includes the 

emissions associated with electricity used for charging and powering the robots during 

cleaning tasks. The intensity varies based on factors such as the robot’s energy 

efficiency, the type of battery used, and the source of the electricity for charging. Robots 

that are more energy-efficient or use cleaner energy sources (like renewables) for 

charging have a lower carbon intensity. Additionally, the operational patterns, such as 

duration and frequency of use, can significantly influence this metric. For instance, 

robots used more intensively in commercial settings might have a higher carbon 

intensity compared to those used less frequently in residential settings. 

Alternatively, measuring the carbon intensity per dollar of revenue offers an economic 

perspective, linking the environmental impact of cleaning robots to their commercial 

performance. This measure is insightful for evaluating the efficiency of robots in terms 
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of environmental cost per economic output. It can vary widely depending on the 

business model, pricing strategies, and market segment being served. A higher carbon 

intensity per dollar of revenue could indicate that the environmental impact is 

disproportionately high compared to the economic benefit generated, which could be a 

concern for businesses aiming to promote sustainable practices. 

Operational efficiency plays a significant role in determining the carbon intensity of 

cleaning robot operations. This includes not only the efficiency of the robots themselves 

but also the management of their deployment.  In regions where the electricity grid is 

largely powered by fossil fuels, the carbon intensity is likely to be higher. Conversely, 

in regions with a high penetration of renewable energy sources the carbon intensity can 

be significantly lower. This highlights the importance of incorporating renewable 

energy sources into the energy mix for charging these robots, either through on-site 

renewable energy generation or by purchasing green energy from the grid. 

Carbon Usage Effectiveness (CUE) for Cleaning Robots 

Carbon Usage Effectiveness (CUE) for cleaning robots, defined as the ratio of total CO2 

equivalent (CO2e) emissions caused by the energy consumption of these robots to their 

actual energy consumption, is a metric in assessing their environmental efficiency.  

The CUE ratio directly reflects the carbon efficiency of the energy sources used to 

power cleaning robots. A lower CUE indicates that a larger portion of the robot's energy 

consumption comes from low-carbon or renewable sources. Conversely, a higher CUE 

suggests a greater reliance on energy sources with higher carbon emissions. This 

measure helps in identifying the impact of the energy mix on the overall carbon 

footprint of cleaning robots and underscores the importance of transitioning to cleaner 

energy sources for charging and operating these devices. 

The energy efficiency of the cleaning robots themselves significantly affects their CUE. 

Robots designed with energy-efficient components, such as high-efficiency motors, 

advanced battery systems, and optimized operational algorithms, consume less power 

for the same level of performance. This reduced energy consumption directly translates 

to lower CO2e emissions, assuming the energy source's carbon intensity remains 

constant.  

Operational practices and management strategies also play a vital role in determining 

the CUE for cleaning robots. Efficient deployment strategies can reduce overall energy 

consumption. Additionally, proper maintenance of robots to ensure they operate 

efficiently and the implementation of smart systems to monitor and control their energy 

usage contribute to a lower CUE. These practices not only reduce the total energy 

consumed but also enhance the operational lifespan of the robots, indirectly affecting 

their carbon footprint. The CUE is also influenced by the broader context of the 

facilities where these robots are used. For instance, in a facility powered predominantly 

by renewable energy, the CUE of the cleaning robots will naturally be lower. This 

highlights the interconnectedness of the robots' energy consumption with the wider 

energy infrastructure and policies.  

End-of-life 

End-of-Life Metrics for Cleaning Robots 

Electronic Waste (E-Waste) 

The issue of electronic waste (E-Waste), concerning robots and their related equipment, 

is becoming increasingly significant in the context of environmental sustainability and 

waste management. Measured in metric tons, E-Waste from cleaning robots measures 

the total weight of these devices and their components that become waste at the end of 

their usable life.  

The composition and lifecycle of cleaning robots are primary factors contributing to E-

Waste. These robots typically comprise a variety of materials, including metals, 

plastics, batteries, and electronic circuitry. Over time, wear and tear, technological 
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obsolescence, or battery degradation can render these robots unusable, leading them to 

be discarded. The total weight of these discarded robots constitutes a significant portion 

of E-Waste, especially considering the growing market penetration and replacement 

rate of cleaning robots in both commercial and residential sectors.  

Battery disposal is a major concern within the E-Waste category, given that most 

cleaning robots are powered by lithium-ion or similar batteries. These batteries have a 

limited lifespan and can be hazardous if not disposed of properly due to their toxic and 

reactive elements. The weight of these batteries contributes significantly to the total E-

Waste from cleaning robots.  

The rapid advancement of technology in the field of robotics leads to a shorter lifespan 

of electronic components due to obsolescence. As new, more efficient, and feature-rich 

models are developed, older cleaning robots are often discarded in favor of newer 

versions, exacerbating the E-Waste problem. This cycle of rapid obsolescence not only 

contributes to the growing volume of E-Waste but also raises concerns about sustainable 

consumption and production patterns. Encouraging the development of upgradable 

robot designs and promoting repair over replacement are strategies that can help reduce 

E-Waste generation. 

Regulatory model and consumer awareness play a significant role in managing E-Waste 

from cleaning robots. Governments and international bodies are increasingly 

implementing regulations regarding E-Waste management, including mandates for 

recycling and restrictions on hazardous substances. Consumer awareness and demand 

for sustainable products can also drive manufacturers to adopt environmentally friendly 

designs and end-of-life management practices. Creating incentives for manufacturers to 

design robots with minimal environmental impact and for consumers to participate in 

E-Waste recycling programs is crucial for reducing the total E-Waste generated by 

cleaning robots. 

Recycling Rate 

The recycling rate of discarded cleaning robots, measured as a percentage, can be used 

for gauging the efficiency and effectiveness of recycling efforts in the context of 

electronic waste (E-Waste) management. This rate indicates the proportion of the total 

weight of these discarded robots, including their components such as batteries, motors, 

and electronic circuitry, that is successfully recovered and recycled.  

The composition of cleaning robots plays a significant role in determining the recycling 

rate. These robots are typically made of a mix of materials, including various metals, 

plastics, electronic components, and batteries. The complexity and diversity of these 

materials can make recycling challenging. Metals like aluminum and steel used in the 

robot's structure are generally more straightforward to recycle. In contrast, complex 

electronic components and certain plastics may require more specialized recycling 

processes. The ease with which these materials can be separated and processed largely 

influences the overall recycling rate. 

Battery recycling is a critical aspect of this metric, especially considering that most 

cleaning robots are equipped with lithium-ion batteries. These batteries pose specific 

challenges due to their hazardous nature and the complexity of their chemical 

composition. However, they also contain valuable materials like lithium and cobalt, 

which can be recovered and reused. Effective recycling of these batteries not only 

contributes to a higher recycling rate but also reduces the demand for raw material 

extraction, thereby mitigating environmental impacts. 

The technology and infrastructure available for recycling also significantly impact the 

recycling rate of cleaning robots. Advanced recycling facilities equipped to handle 

complex E-Waste can achieve higher recycling rates by efficiently processing diverse 

materials and recovering more valuable components. The presence and accessibility of 

such facilities, along with the logistics of transporting E-Waste to these locations, are 

key factors. Additionally, technological advancements in recycling processes, such as 
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improved methods for material separation and purification, can enhance the overall 

efficiency and effectiveness of recycling. 

Table 4. End-of-life stage 

Category Measure Description 

Electronic Waste 

(E-Waste) 

Metric tons Total weight of cleaning robots and related 

equipment that become electronic waste when 

they reach the end of their usable life. 

Recycling Rate Percentage 

(%) 

Proportion of the total weight of discarded 

cleaning robots that is recycled, including 

components like batteries, motors, and 

electronic circuitry. 

Electronics 

Disposal 

Efficiency (EDE) 

Percentage 

(%) 

Efficiency of disposing of electronic 

components of cleaning robots, calculated as the 

ratio of e-waste responsibly processed (recycled, 

refurbished, or reused) to the total e-waste 

generated. 

Percentage of 

Electronic Waste 

Sent to Landfills 

Percentage 

(%) 

Proportion of the total e-waste from cleaning 

robots that is sent to landfills, indicating the 

amount of waste not recycled or processed 

through environmentally friendly methods. 

 

Consumer behavior and regulatory policies play a substantial role in determining the 

recycling rate. Public awareness about the importance of recycling and the availability 

of convenient recycling options can encourage more consumers to recycle their used 

cleaning robots. Robust regulatory model that mandate recycling and proper E-Waste 

management can significantly increase recycling rates. Regulations might include 

producer responsibility initiatives, where manufacturers are accountable for the end-of-

life management of their products, incentivizing them to design products that are easier 

to recycle. 

The design of cleaning robots influences their recyclability and, consequently, the 

recycling rate. Designing for disassembly, where robots are made with recycling in 

mind, can greatly facilitate the recycling process. This includes using fewer types of 

materials, avoiding permanent adhesives and fasteners, and clearly labeling different 

materials for easy identification. Such design considerations can not only streamline the 

recycling process but also improve the quality of the recovered materials, making them 

more valuable for reuse. 

Electronics Disposal Efficiency (EDE) 

Electronics Disposal Efficiency (EDE) is a metric measured as a percentage. It 

quantifies the efficiency with which the electronic components of these robots are 

disposed of. EDE is calculated by taking the ratio of e-waste that is responsibly 

processed—either through recycling, refurbishing, or reusing—to the total e-waste 

generated by these robots.  

The effectiveness of recycling programs is a major contributor to EDE. Recycling 

involves breaking down the electronic components of cleaning robots and extracting 

valuable materials for reuse. A high recycling rate boosts the EDE, indicating a 

responsible approach to e-waste management. This efficiency is contingent on the 

existence of robust recycling infrastructure and technology capable of handling 

complex electronic waste. The design of the robots plays a crucial role; robots designed 

with recycling in mind, featuring modular components and materials that are easily 

separable, significantly enhance recycling efficiency. 

Refurbishment and reuse represent another aspect of EDE. When parts or entire 

cleaning robots are refurbished for further use, they contribute positively to the EDE 

ratio. This practice not only extends the life of electronic components but also reduces 

the need for producing new materials, thereby conserving resources and energy. The 
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feasibility of refurbishment largely depends on the initial build quality of the robots, 

their ease of repair, and the availability of spare parts.  

The total e-waste generated is the denominator in the EDE calculation and is a measure 

of the environmental burden posed by the disposal of cleaning robots. Reducing this 

total waste is as important as increasing the rate of responsible processing. Strategies 

like extending the life span of robots, improving repairability, and encouraging 

upgrades instead of replacements can effectively reduce the total volume of e-waste 

generated, thus improving the EDE. 

Awareness and regulatory models significantly impact EDE. Consumer awareness 

about the importance of responsible e-waste disposal and the availability of convenient 

and accessible disposal options can encourage more users to participate in recycling and 

refurbishment programs. Regulatory policies mandating proper e-waste disposal and 

producer responsibility can also lead to higher EDE, ensuring that manufacturers and 

consumers alike contribute to responsible e-waste management. Advances in recycling 

technologies that allow more efficient material recovery, the development of global 

standards for e-waste processing, and the integration of circular economy principles into 

product design and end-of-life handling are pivotal. Such innovations can make the 

process of recycling, refurbishing, and reusing more effective and efficient, thereby 

enhancing the overall Electronics Disposal Efficiency. 

Percentage of Electronic Waste Sent to Landfills 

The percentage of electronic waste (E-Waste) from cleaning robots that is sent to 

landfills is a crucial environmental metric, measured as a percentage. This figure 

represents the proportion of the total e-waste generated by these robots that ends up in 

landfills, highlighting the portion that is not recycled, refurbished, or otherwise 

processed through environmentally friendly methods.  

The high percentage of e-waste from cleaning robots that ends up in landfills is 

indicative of gaps in recycling and waste management systems. This could be due to a 

lack of adequate recycling infrastructure, insufficient consumer awareness about 

recycling options, or the complexity of recycling certain components of these robots. 

E-waste in landfills poses significant environmental risks, including soil and water 

contamination from hazardous substances like heavy metals and chemicals commonly 

found in electronics. Therefore, reducing the proportion of e-waste sent to landfills is 

crucial for mitigating these environmental risks. 

The design and manufacturing of cleaning robots significantly influence their end-of-

life disposal. Products designed with disassembly and recyclability in mind tend to have 

a lower percentage of their components ending up in landfills. Conversely, robots made 

with non-recyclable materials or complex designs that hinder disassembly contribute to 

higher landfill rates. This underscores the importance of adopting design-for-

recyclability principles in the manufacturing of cleaning robots, promoting the use of 

recyclable materials and modular designs that facilitate easier recycling and 

refurbishment. 

Many consumers may not be aware of the proper disposal methods for these products 

or may not have access to convenient recycling facilities. Enhancing public awareness 

campaigns, providing easy access to recycling centers, and offering incentives for 

recycling can encourage more responsible disposal practices, thus reducing the 

percentage of e-waste that ends up in landfills. Regulatory model s and policies are also 

key drivers in managing e-waste disposal. Governments and regulatory bodies can 

implement policies that discourage landfill disposal of e-waste, such as landfill bans on 

certain electronic items, mandatory recycling schemes, and extended producer 

responsibility programs. These policies can compel manufacturers and consumers to 

adopt more sustainable disposal practices, thereby reducing the reliance on landfills for 

e-waste management. 
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Conclusion 

The recent surge in the adoption of cleaning robots reflects a broader trend towards 

automation in both domestic and commercial sectors. Fueled by significant 

technological advancements, these robots have become increasingly sophisticated, 

efficient, and user-friendly. Predominantly powered by electricity, these machines 

integrate various materials and electronic components to perform a range of cleaning 

tasks. However, the rise in their popularity and use brings into focus the environmental 

implications associated with their life cycle. From the extraction of raw materials 

needed for their production to their eventual disposal or recycling, each stage of a 

cleaning robot's life has potential environmental impacts. These impacts include energy 

consumption during use, emissions during manufacturing, and waste generation at the 

end of their service life. As cleaning robots become more common, it is vital to 

understand and address these environmental challenges to ensure that the benefits of 

this technology do not come at an undue ecological cost. 

Life Cycle Assessment (LCA) offers a structured approach to evaluate the 

environmental footprint of products throughout their life span. This methodology 

encompasses all stages of a product's life, starting from the extraction of raw materials 

to the processing of these materials, manufacturing, distribution, usage, and finally, 

repair, maintenance, and disposal or recycling. LCA serves as a tool in making informed 

decisions in product development, helping manufacturers and policymakers choose 

options that are more sustainable and environmentally friendly. LCA can reveal insights 

into the most impactful stages of their life cycle, guide improvements in design and 

manufacturing processes, and suggest more sustainable practices in their use and 

disposal [7].  

Most existing LCA models are too generic to accurately reflect the unique 

characteristics and usage patterns of cleaning robots. This limitation is significant 

because the environmental impact of these robots can vary greatly depending on factors 

like their energy efficiency, the materials used in their construction, and their durability. 

For example, a robot designed for heavy commercial use might have different 

environmental impacts compared to one designed for light domestic use. The lack of a 

dedicated LCA model for cleaning robots signifies a gap in our understanding of their 

environmental impacts. Developing a specialized LCA model for these devices would 

enable a more accurate assessment of their ecological footprint. Such a model would 

need to take into account the specific materials, energy use patterns, and disposal 

methods relevant to cleaning robots, leading to more effective strategies for reducing 

their environmental impact. 

The thoroughness allows the LCA to cover a broad spectrum of environmental issues 

across all life cycle stages of cleaning robots: production, transportation, operation, and 

end-of-life. Such an all-encompassing approach can be useful for identifying significant 

environmental impacts at each stage. For instance, during the production phase, LCA 

can shed light on the environmental consequences of materials and manufacturing 

processes used in cleaning robots. Similarly, in the operational phase, it can assess 

energy consumption and its environmental footprint. This analysis is also useful in 

pinpointing areas where environmental impacts are most pronounced, guiding targeted 

improvements and innovations in the design and use of cleaning robots. 

LCA may fall short in capturing the details of every individual process or the unique 

environmental implications of specific materials and technologies employed in cleaning 

robots. This limitation is relevant when considering the diverse range of components 

and varied manufacturing processes involved in robot production. Additionally, 

simplifications in modeling the environmental impacts might lead to overlooking 

certain subtle yet critical aspects, such as region-specific environmental effects or the 

long-term implications of certain materials and technologies. Therefore, LCA might not 

always provide the details needed to fully understand and address every environmental 

nuance associated with cleaning robots. 
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The application of the best estimate principle in LCA facilitates unbiased comparisons, 

which is advantageous when evaluating different cleaning robot systems or comparing 

these robots to alternative cleaning methods. This principle ensures a consistent level 

of precaution and methodology across various assessments, allowing for a fair and 

balanced comparison of environmental impacts. However, this approach has its 

limitations. It implies that LCA assessments are based on average performance data, 

which may not consider the risks associated with rare but severe environmental 

incidents. This is a significant consideration for cleaning robots, as the technology and 

usage scenarios can vary widely, potentially leading to environmental impacts that are 

not adequately captured by average data. For instance, a rare malfunction in a robot's 

battery system might have serious environmental repercussions, which would not be 

accounted for in an LCA based on typical performance metrics. Thus, while the “best 

estimate” principle aids in unbiased comparison, it may not fully encompass the 

spectrum of potential environmental risks associated with cleaning robots. 

LCA can determine which cleaning robot model or system is more environmentally 

friendly relative to another, but it does not necessarily indicate that the preferred option 

is sustainable in absolute terms. This is a crucial distinction, as it highlights the need 

for ongoing evaluation and improvement. Simply because one cleaning robot performs 

better in an LCA compared to another does not make it wholly sustainable. It is essential 

to recognize that sustainability is a moving target, requiring continual advancements 

and reassessments. This limitation shows the importance of not only using LCA as a 

comparative tool but also as a means for continuous improvement in the environmental 

performance of cleaning robots. It serves as a reminder that achieving sustainability is 

process, necessitating regular updates and refinements to LCA methodologies and the 

environmental strategies employed in the design and operation of cleaning robots.  
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